解析卷-滬科版9年級下冊期末試卷附答案詳解(達(dá)標(biāo)題)_第1頁
解析卷-滬科版9年級下冊期末試卷附答案詳解(達(dá)標(biāo)題)_第2頁
解析卷-滬科版9年級下冊期末試卷附答案詳解(達(dá)標(biāo)題)_第3頁
解析卷-滬科版9年級下冊期末試卷附答案詳解(達(dá)標(biāo)題)_第4頁
解析卷-滬科版9年級下冊期末試卷附答案詳解(達(dá)標(biāo)題)_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分?jǐn)噭蚝螅我饷?個球記下顏色然后再放回盒子里,通過如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.184、下列說法錯誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生5、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.6、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個球,這個球是白球的概率是()A. B. C. D.7、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機(jī)摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.8、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.2、如圖,AB為的弦,半徑于點(diǎn)C.若,,則的半徑長為______.3、如圖,AB是半圓O的弦,DE是直徑,過點(diǎn)B的切線BC與⊙O相切于點(diǎn)B,與DE的延長線交于點(diǎn)C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_____.5、如圖,已知⊙O的半徑為2,弦AB的長度為2,點(diǎn)C是⊙O上一動點(diǎn)若△ABC為等腰三角形,則BC2為_______.6、如圖,在中,,,.繞點(diǎn)B順時針方向旋轉(zhuǎn)45°得到,點(diǎn)A經(jīng)過的路徑為弧,點(diǎn)C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結(jié)果保留)7、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.三、解答題(7小題,每小題0分,共計(jì)0分)1、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其他都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當(dāng)天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.2、下面是“過圓外一點(diǎn)作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點(diǎn)P.求作:過點(diǎn)P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點(diǎn)O和點(diǎn)P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點(diǎn);(3)作直線MN,交OP于點(diǎn)C;(4)以點(diǎn)C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點(diǎn);(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點(diǎn)A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點(diǎn)A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.3、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點(diǎn).(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.4、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.5、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍(lán)球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.6、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點(diǎn)D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點(diǎn)E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當(dāng)點(diǎn)E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時,求點(diǎn)A與點(diǎn)D之間的距離(直接寫出答案).7、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時,A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時,請直接寫出此時旋轉(zhuǎn)角α的度數(shù).-參考答案-一、單選題1、B【分析】如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點(diǎn)睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.2、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、C【分析】在同樣條件下,大量反復(fù)試驗(yàn)時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗(yàn),a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.4、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項(xiàng).【詳解】解:A.必然事件發(fā)生的概率是1,故該選項(xiàng)正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項(xiàng)正確,不符合題意;C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1,故該選項(xiàng)正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項(xiàng)不正確,符合題意;故選D【點(diǎn)睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大?。罕厝话l(fā)生的事件發(fā)生的概率為1,隨機(jī)事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.5、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識點(diǎn)是解題關(guān)鍵.6、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計(jì)算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.7、C【分析】根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機(jī)摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機(jī)抽取一個球是黃球的概率是.故選C.【點(diǎn)睛】本題主要考查了概率公式的應(yīng)用,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.8、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.二、填空題1、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點(diǎn)到點(diǎn)A,B,C的距離相等,如下圖:,,故答案是:5.【點(diǎn)睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.2、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點(diǎn)睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.3、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關(guān)鍵.4、【分析】利用勾股定理求出AC及AB的長,根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點(diǎn)睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計(jì)算公式及分析出陰影面積的構(gòu)成特點(diǎn)是解題的關(guān)鍵.5、4或12或【分析】分三種情況討論:當(dāng)AB=BC時、當(dāng)AB=AC時、當(dāng)AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時,BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.6、##【分析】設(shè)與AC相交于點(diǎn)D,過點(diǎn)D作,垂足為點(diǎn)E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關(guān)系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結(jié)合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設(shè)與AC相交于點(diǎn)D,過點(diǎn)D作,垂足為點(diǎn)E,∵,,,∴,∴為直角三角形,∴,∵繞點(diǎn)B順時針方向旋轉(zhuǎn)45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點(diǎn)睛】題目主要考查勾股定理逆定理,旋轉(zhuǎn)的性質(zhì),等角對等邊的性質(zhì),正切函數(shù),扇形面積等,理解題意,結(jié)合圖形,綜合運(yùn)用這些知識點(diǎn)是解題關(guān)鍵.7、60【分析】正六邊形連接各個頂點(diǎn)和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點(diǎn)睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.三、解答題1、(1)搖出一紅一白的概率=(2)選擇甲品牌化妝品,理由見解析【分析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應(yīng)的平均收益,比較即可.(1)解:樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,搖出一紅一白的概率=;(2)(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴甲品牌化妝品獲禮金券的平均收益是:×6+×12+×6=10元.乙品牌化妝品獲禮金券的平均收益是:×12+×6+×12=8元.∴選擇甲品牌化妝品.【點(diǎn)睛】本題主要考查的是概率的計(jì)算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、直徑所對的圓周角是直角經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線【分析】連接OA,OB,根據(jù)圓周角定理可知∠OAP=90°,再依據(jù)切線的判定證明結(jié)論;【詳解】證明:連接OA,OB,∵OP是⊙C直徑,點(diǎn)A在⊙C上,∴∠OAP=90°(直徑所對的圓周角是直角),∴OA⊥AP.又∵點(diǎn)A在⊙O上,∴直線PA是⊙O的切線(經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線),同理可證直線PB是⊙O的切線,故答案為:直徑所對的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.3、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點(diǎn)睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質(zhì),相似三角形的判定與性質(zhì)等知識;證明圓的切線時,往往作半徑.4、邊長為,邊心距為【分析】過點(diǎn)O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點(diǎn)O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心距為.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及勾股定理,正多邊形各邊所對的外接圓的圓心角都相等,正多邊形每一邊所對的外接圓的圓心角叫做正多邊形的中心角,正n邊形每個中心角都等于.5、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計(jì)算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍(lán)”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計(jì)算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍(lán)球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍(lán)”,列表法為:紅1紅2黃藍(lán)紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍(lán))紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍(lán))黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍(lán))藍(lán)(藍(lán),紅1)(藍(lán),紅2)(藍(lán),黃)(藍(lán),藍(lán))共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點(diǎn)睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.6、(1)8(2)(3)或.【分析】(1)過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點(diǎn)O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論