




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在圓內接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°2、下列事件為必然事件的是()A.明天要下雨B.a是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞3、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.4、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.5、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.6、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm7、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.8、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.2、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.3、如圖,在中,,是內的一個動點,滿足.若,,則長的最小值為_______.4、兩直角邊分別為6、8,那么的內接圓的半徑為____________.5、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.6、AB是的直徑,點C在上,,點P在線段OB上運動.設,則x的取值范圍是________.7、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關系,并證明.2、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結DE交射線AO于點E,聯(lián)結OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當OE=1時,求點A與點D之間的距離(直接寫出答案).3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.4、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數(shù).在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F(xiàn)是的“成對關聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯(lián)點”,直接寫出點G的縱坐標的取值范圍.5、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結果;(2)求取出的兩個小球標號和等于5的概率.6、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其他都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.7、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.-參考答案-一、單選題1、C【分析】,,,進而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內接四邊形中對角互補.解題的關鍵在于根據角度之間的數(shù)量關系求解.2、B【分析】根據事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質,有理數(shù)大小比較,掌握相關知識是解題的關鍵.3、A【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.4、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.5、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.6、B【分析】如圖所示,過C作CD⊥AB,交AB于點D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點D,在Rt△ABC中,AC=3cm,BC=4cm,根據勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點睛】此題考查了切線的性質,勾股定理,以及三角形面積求法,熟練掌握切線的性質是解本題的關鍵.7、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關系以及視圖和實物之間的關系,同時還考查了對圖形的想象力,難度適中.8、C【分析】根據中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.二、填空題1、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據三角形的三邊關系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質,全等三角形的判定和性質,勾股定理,關鍵是證點H是以AB為直徑的圓上一點.2、【分析】抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點數(shù)小于5的概率.【詳解】解:∵抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點數(shù)小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.4、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.5、【分析】由與是等腰直角三角形,得到,,根據全等三角形的性質得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當時,的值最小,解直角三角形即可得到結論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質,等腰直角三角形的性質,正確的作出輔助線是解題的關鍵.6、【分析】分別求出當點P與點O重合時,當點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當點P與點O重合時,∵OA=OC,∴,即;當點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質,直徑所對的圓周角是直角的性質,正確理解點P的運動位置是解題的關鍵.7、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.三、解答題1、(1)見解析;(2)(3)【分析】(1)根據題意補全圖形即可;(2)根據旋轉的性質可得,,進而證明,可得,根據角度的轉換可得,進而根據三角形的外角性質即可證明;(3)過點作,證明,進而根據勾股定理以及線段的轉換即可得到(1)如圖,(2)將線段AE繞點A逆時針旋轉90°,得到線段AF,,,又即(3)證明如下,如圖,過點作,又,又,即【點睛】本題考查了旋轉的性質,三角形全等的性質與判定,勾股定理,等腰三角形的性質,掌握旋轉的性質是解題的關鍵.2、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當點E在線段OA上時,如圖3,過點E作EG⊥AC于G,過點O作OH⊥AC于H,延長AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當點E在線段AO的延長線上時,如圖4,延長AO交⊙O于M,連接AD,DM,過點E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長是或【點睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質與判定,圓周角定理,正切的作出輔助線是解題的關鍵.3、見解析【分析】根據幾何體的三視圖畫法作圖.【詳解】解:如圖,.【點睛】此題考查了畫小正方體組成的幾何體的三視圖,正確掌握幾何體的三視圖的畫圖方法是解題的關鍵.4、(1)B和C;(2);(3)【分析】(1)根據圖形可確定與點A組成的“成對關聯(lián)點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯(lián)點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯(lián)點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當點E在線段上時,有的“成對關聯(lián)點”∴;(3)如圖,當點G在上時,軸,在上不存在這樣的矩形;如圖,當點G在下方時,也不存在這樣的矩形;如圖,當點G在上方時,存在這樣的矩形GMNH,當恰好只能構成一個矩形時,設,直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當時,點G,H是的“成對關聯(lián)點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關聯(lián)點”的定義是解題的關鍵.5、(1)見詳解;(2).【分析】(1)根據題意通過列出相應的表格,即可得出所有可能結果;(2)由題意利用取出的兩個小球標號和等于5的結果數(shù)除以所有可能結果數(shù)即可得出答案.【詳解】解:(1)由題意列表得:12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的結果有12種;(2)由(1)表格可知取出的兩個小球標號和等于5的結果有(1,4)、(2,3)、(3,2)、(4,1)共4種,而所有可能的結果有12種,所以取出的兩個小球標號和等于5的概率.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、(1)搖出一紅一白的概率=(2)選擇甲品牌化妝品,理由見解析【分析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應的平均收益,比較即可.(1)解:樹狀圖為:∴一共有6種情況,搖出一紅一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省南昌市2024-2025學年八年級下學期期末語文試題(解析版)
- 文職技術崗的試題及答案
- 2025員工技能提升合同書范本
- 2025貨車駕駛員勞務合同范本
- 2025合同評估企業(yè)所需提交文件清單
- 2025年食品供應合同范本
- 搬遷點消防知識培訓課件
- 揭開記憶的奧秘課件
- 插花課件制作
- 2025種植保險合同范文樣本
- DB32T 4972.1-2024傳染病突發(fā)公共衛(wèi)生事件應急處置技術規(guī)范 第1部分:監(jiān)測預警
- 銀行合同簽署管理制度
- 頸動脈粥樣硬化的健康宣教
- 民豐縣盼水河鉛銻礦工程項目環(huán)境影響報告書
- 檢驗員考核標準
- 2025-2030咖啡豆和膠囊行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 餐飲業(yè)安全生產管理制度匯編
- 杜絕抱怨的培訓
- 底泥資源化利用研究進展
- 大企業(yè)稅收風險分析典型案例匯編
- 混凝土質量保證措施
評論
0/150
提交評論