




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省揚(yáng)州市2024-2025學(xué)年高一上學(xué)期期末檢測數(shù)學(xué)試卷
一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分,在每小題給出的四個選項(xiàng)中,只
有一項(xiàng)、是符合題目要求的.
1.命題“VxeR,fNO”的否定是()
A.VXGR,%2<0B.不存在xeR,x2<0
C.3x0eR,XQ>0D.玉°eR,XQ<0
【答案】D
【解析】???全稱命題的否定是特稱命題
二命題"VxeR,無?20”的否定是:3x0eR,竟<0.
故選:D.
2.集合{名尸}的真子集個數(shù)為()
A.1B.2C.3D.4
【答案】C
【解析】集合{名尸}的元素個數(shù)為2,該集合的真子集個數(shù)為2?-1=3.
故選:C.
3.不等式^—<0的解集為()
X-1
A.(-1,1]B.(-1,1)C.[-1,1)D.[-1,1]
【答案】C
x+1(冗+1)(%—1)?0—1W%W1
【解析】因?yàn)椤?lt;0等價于I八),解得:1,
x-l[x—lwO[x^l
即:-1<X<1,所以不等式二yWO的解集為[—1,1).
故選:C.
4.若x>0,y〉0,則下列式子一定正確的是()
-----------3
A.6="
C.lg(x+y)=lgx+lgyD.lg(2x)=21g無
【答案】A
【解析】A:尤=(尤2)5=尤W,對;
B:6.x-y'f=|x-y|*>=1x-y\'錯;
C、D:由對數(shù)的運(yùn)算性質(zhì)有1g(肛)=lgx+lgy、lg(2x)=lg2+lgx,錯.
故選:A.
5.函數(shù)/(%)=xsinx的圖象大致為()
【解析】因?yàn)橛?x)=xsinx的定義域?yàn)镽關(guān)于原點(diǎn)對稱,且/(一%)=(-x)[sin(-x)]=/(%),
所以/(%)為偶函數(shù),故排除C,D;
因?yàn)閥=x,y=sinx在xe[0,1J均為增函數(shù),且函數(shù)值均為正,
jr
所以/(%)=xsinx在[0,—]上單調(diào)遞增.
2
故選:B.
若幕函數(shù)的圖象經(jīng)過點(diǎn)14、
6.,則下列說法正確的是(
B.方程/(%)=27的實(shí)數(shù)根為:
A./(%)為偶函數(shù)
C./(%)在(0,+8)上為增函數(shù)D./(%)的值域?yàn)镽
【答案】B
【解析】設(shè)/(尤)=九",代入點(diǎn)(4,可得4"=,,所以。=一],
\oJ82
所以〃x)=H=,,因?yàn)椋?>0,所以%>0,即函數(shù)/(%)的定義域?yàn)?0,+8),
對于A:因?yàn)?(%)的定義域?yàn)?0,+00),不關(guān)于原點(diǎn)對稱,
所以/'(%)既不是為偶函數(shù)也不是奇函數(shù),故A錯誤;
對于B:令/(x)=27,所以,=27,解得x故B正確;
33
對于C,因?yàn)?(1)=尤2,因?yàn)?=一5<0,
所以“外在(0,一)上為減函數(shù),故C錯誤;
對于D:因?yàn)?(x)=x,=J口,
所以d>0,所以〃力>0,“X)的值域?yàn)?0,+刃),故D錯誤.
故選:B.
2
7.已知3"=2,5"=3,c=~,則的大小關(guān)系為()
A.b<a<cB.a<b<cC.a<c<bD.b<c<a
【答案】C
2
【解析】a=log32,b=log53,c=-,
22
c=]=log3=log3y/9>log3雙=a,
c=j=log55^=log5^25<log5^27=log53=b,
所以avcv/?.
故選:C.
8.在平面直角坐標(biāo)系i0y中,單位圓上的動點(diǎn)?、。同時從點(diǎn)A(l,0)出發(fā),點(diǎn)尸按逆時針
_7l7T
方向每秒鐘轉(zhuǎn)7弧度,點(diǎn)Q按順時針方向每秒鐘轉(zhuǎn);弧度.若兩點(diǎn)相遇時的坐標(biāo)是
88
~二~~二~則此時它們可能是第()次相遇.
A.10B.11C.12D.13
【答案】B
則/=6+16尢=3土詈,所以2+7尢=月,
7T7TTt
要使RQ相遇,貝1(—+——?=27加且〃eN,即〃=—,
882
若如=10,則/=20,此時匕,&eN,A錯;
若“=11,則/=22,此時左=1,左2=9,B對;
若〃=12,則/=24,止匕時匕,左20N,C錯;
若〃=13,則f=26,此時尢,自eN,D錯.
故選:B.
二、多項(xiàng)選擇題:本題共3小題,每小題6分,共18分,在每小題給出的選項(xiàng)中,有多項(xiàng)
符合題目要求,全部選對的得6分,部分選對的得部分分,有選錯的得。分.
9.下列三角函數(shù)值的符號為負(fù)的有()
A.sin(-40°)B.sin1000
471
C.cos2D.tan
【答案】AC
【解析】A.—40。角的終邊在第四象限,所以sin(-40。)<0,故A正確;
B.100。的角的終邊在第二象限,所以sinlCXJ>0,故B錯誤;
C.2弧度的角的終邊在第二象限,所以cos2<0,故C正確;
4兀(4兀、
D.-彳的角的終邊在第三象限,所以tan[-歹)〉0,故D錯誤.
故選:AC.
10.已知實(shí)數(shù)。/滿足。>0”>0且a+2Z?=l,則下列說法正確的有()
〃+]b
A.若,則對任意實(shí)數(shù)ac2>be1B.若則->—
a+1a
c.工+」的最小值是3+20D.片+4尸的最小值是:
【答案】BCD
【解析】A:當(dāng)。=0,此時以2=兒乙錯;
b+1bab+a-ab-ba-b八b+1b-
B:由[>〃,則------->。,即nn一對;
6Z+1a+1)a(a+l)a+1a
-1111、/ci、c2bacc,2%,3+2日
C:—i——(z—i—)(4Z+2Z?)—3H------1-23+2J—,
ababab\a
當(dāng)且僅當(dāng)〃=721力=2-立時取等號,對;
2
D:由a=l—2Z?>0,則0<匕<L,故片+4尸=8〃—4b+l=8(b—1)2+工,
242
當(dāng)〃=L時,。2+482取得最小值;,對.
42
故選:BCD.
11.已知函數(shù)/(%)=?的圖象過坐標(biāo)原點(diǎn),且值域?yàn)椋?3,0],則下列說法正確的
有()
A.b=3
B./(-3)>/(2)
C.若0<玉<々,則<"""/)
-3-
D.若關(guān)于x的方程〃2x)—〃x)=左有實(shí)數(shù)根,則實(shí)數(shù)上的取值范圍為一70
【答案】ACD
【解析】對于選項(xiàng)A:因?yàn)楹瘮?shù)過坐標(biāo)原點(diǎn),所以/(O)=axl—b=a—3=0,即
因?yàn)楹瘮?shù)的值域?yàn)?-3,0],即在x=0處取得最大值,
所以函數(shù)在區(qū)間(f,0]上單調(diào)遞增,在(0,y)上單調(diào)遞減;
當(dāng)x趨于無窮大時,趨于0,"%)趨于—即—b=—3,即6=3,故A正確;
對于選項(xiàng)B:因?yàn)?(—3)=/⑶,又函數(shù)在(0,+o))上單調(diào)遞減,所以〃3)<7?⑵,即
/(-3)</(2),故B錯誤;
對于選項(xiàng)C:當(dāng)了>0時,y(x)=3(g『—3=,)-3,
3U_3/叫/㈤
,故C正確;
對于選項(xiàng)D:令t=G1/e(O,l],/(2x)-/(x)=3?-3?=3^-1^—;,
13
當(dāng),=5時,取最小值-“當(dāng)7=0或y1時,值為0,所以方程〃2x)—/(%)=左有實(shí)
數(shù)根,
-3'
則實(shí)數(shù)上的取值范圍為-7,0,故D正確.
_4_
故選:ACD.
三、填空題:本題共3小題,每小題5分,共15分.
12.計(jì)算:eln2+lg2+lg5=_.
【答案】3;
【解析】eln2+lg2+lg5=2+lgl0=2+1=3.
13.已知函數(shù)/(九)滿足下列三個條件:①對任意xeR,/(x+7i)=/(x);②對任意
xeR,+=③/(%)的值域?yàn)閇0,2],則/(X)=.(寫出滿足
要求的一個函數(shù)即可)
【答案】cos2x+l(答案不唯一)
【解析】條件①說明函數(shù)/(%)的周期為兀,條件②說明函數(shù)/(“關(guān)于x對稱,
根據(jù)三角函數(shù)性質(zhì)可知,滿足條件的函數(shù)為cos2x+l(答案不唯一).
[x-1+3,x</
14.已知函數(shù)=</\2,若對任意xeR,reR,不等式
(x-Z-2)-l,x>t
/(x+a)>/(x)成立,則實(shí)數(shù)。的取值范圍是.
【答案】]蔓,+°0]
【解析】由y=x-/+3在xe(—ooj)上單調(diào)遞增,且過點(diǎn)?—4,-1),
在xe[/,+8)上y=—。—2)~—1,在[//+2)上單調(diào)遞減,在Q+2,+0。)上單調(diào)遞增,
結(jié)合“X)解析式,其大致圖象如下圖,
隨f變化,/(尤)的圖象只在X軸上平移,
令過5Q+2,—1)且平行于y=x—/+3的直線為y=x+m,
則,+2+根=一1,所以加二一3-八i^y=x-t-39
聯(lián)立y=-3與,=(x_/_2)2消去)得x_/_2=(1_/_2)2,
所以x=f+2或%=f+3,
對任意尤eR,才6區(qū)都有/(%+。)>/(%)成立,
由圖知,在Q—41+2)上”可不單調(diào),必有。>6,
需保證—4/—3),x+ae?+2/+3)時有(x+a—r—2)2-1>%-7+3,
所以x?+(2a—2t—5)x+a?-2ta+廠—4a+5f>0,
25
/=(2a—2f—5)2—4(〃_2勿+/—4a+5/)<0,整理得4a>25,所以?!刀?
綜上,實(shí)數(shù)”的取值范圍是+sJ
四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
15.已知集合4={%,2—6x+5<0},B=|x|fl-2<x<tz+l|.
(1)若a=l,求Ac8,A\JB;
(2)若“xeA”是“九e3”的必要條件,求實(shí)數(shù)”的取值范圍.
解:⑴A=^x|x2-6%+5<oj'=1x|l<x<5j,
當(dāng)a=l,5={川-1VxV2},
所以人口3=[1,2],AUB=[-1,5].
(2)因?yàn)椤皒eA”是“xeB”的必要條件,所以
[a-2>l
所以〈,,解得3WaW4.
a+l<5
16.在平面直角坐標(biāo)系尤Qv中,角a以x軸的正半軸為始邊,它的終邊與單位圓交于第四象
限內(nèi)的點(diǎn)P(%,%).
(1)若%=2^,求sin2(7i—cz)—sin(7i+cz)cos(7i—cz)—2cos2(—cz)的值;
(2)若sin(z+cos(z,求tantz+---的值及點(diǎn)尸的坐標(biāo).
5tan。
解:(1)因?yàn)榻恰昱c單位圓交于第四象限內(nèi)的點(diǎn)P($,%),
所以sina=%,cosa=x0,tana=—,后+*=1,y0<0,
%0
sin2(兀一c)—sin(冗+a)COS(TI—a)—2cos2(—6z)=sin2a—sinacosa—2cos2a,
2
法1:sina—sinecosa-2cos之a(chǎn)=y1-xQy0-2考
法2:tana=-2,
sin2a-sinacosa-2cos2a
sin2a-sinacosa-2cos2a
sm?2a+cos2a
tan2a-tan(/-24
=-----------------=—.
tan2a+15
/、、,1sinocos。1
(2)法1:tano+------=-------+-------=--------------,
tanacosasinasinacosa
因?yàn)閟ino+cose=2,①
112
所以兩邊平方得1+2$111。以的。=—,即sinocos。=----,
2525
1125
所以tanc+------=-------------=------,
tanasinacosa12
由角。終邊位于第四象限,得sina<0,cosa〉0,
法2:由角a終邊位于第四象限,得sina<0,cosa〉0,
因?yàn)閟ina+cose=2,①
且sin?a+cos?a=1,②
34
所以由①②解得:sina=--,coscir,
?…1sinacosa3425
所以tanaH--------=---------1--------=---------=------
tanorcosasina4312
點(diǎn)P的坐標(biāo)為[二,一1).
17.已知定義在R上函數(shù)/(月=束口-1的圖象關(guān)于坐標(biāo)原點(diǎn)對稱.
(1)求實(shí)數(shù)機(jī)的值;
(2)判定了(%)的單調(diào)性并證明;
(3)若實(shí)數(shù)。滿足/(242〃)>一g,求。的取值范圍.
解:⑴因?yàn)樵赗上/(x)=gg-1的圖象關(guān)于原點(diǎn)對稱,所以“力為奇函數(shù),
所以/(0)=*—1=0,即m=2,檢驗(yàn)如下,
,,,、l-5'v曲”\\1-5"l-5-xl-5-r5V-1八
止匕a時/(%)=-----,所以/(尤)+f(-x)=------1------=-----1-----=0,
')5X+1v7v)5X+15-%+15X+15X+1
故/(%)是奇函數(shù),滿足要求.
所以加=2.
(2)〃龍)在R上單調(diào)遞減,證明如下:
任取芯,%2eR且芭<%,
則"6“*)=(島-1卜島一1卜離
因?yàn)樾?lt;々,所以5』<5次,又5』+1>0,5f+1>0,
所以/(%)—/(%)>。,所以/(%)在R上單調(diào)遞減.
(3)法1:因?yàn)?⑴=—|,所以/(2。2-2。)〉一:可化為2〃)〉/⑴,
因?yàn)?(%)在R上單調(diào)遞減,所以2/一2。<1,
即2/口<2°,所以/一2口<0,解得0<a<2.
法2:在/'(2j〃)〉—|中,令=x,則/(x)〉—g,
22
即-------1>—,即%<1,所以2。2-2“<1,
5X+13z1
即2陵-2”<2。,所以儲一2〃<0,解得0<a<2.
18.已知用“五點(diǎn)法”畫函數(shù)/(£)=Asin(ox+e)[A〉O,0〉O,[d<]J在一個周期上的
圖象時,列表如下:
7T71717兀5兀
X
-612312~6
713兀
cox+(p0712兀
2T
_1
000
/(x)2~2
⑴求/(%)的解析式;
(2)將函數(shù)y=/(x)圖象上所有點(diǎn)向右平移W個單位長度,再將圖象上每個點(diǎn)的橫坐
標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象.
①求g(x)在[0,兀]上的單調(diào)增區(qū)間;
57r
②若關(guān)于x的方程g(x)=772在0,—上有四個不相等的實(shí)數(shù)根
%,%2,%3,%4(國〈電V%),求tan(x+%2+%+%4)的值.
1571(711
解:(1)由題意得A=z,T――———=71,所以。=2.
2616)
所以/(%)=gsin(2%+0).
因?yàn)樗陨?夕=巴+2依(左£Z),即0=/+2E,
2623
因?yàn)殚l,所以0
所以/(X)=gsin[2x+]]
(2)①將y=/(x)圖象上所有點(diǎn)向右平移今個單位長度后得到y(tǒng)=;sin(2x+t]的圖
象,
再將圖象上每個點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到y(tǒng)=gsin[x+2的圖象,
所以g(x)=;sin
令2E—四<x+—<2kn+—{keZ),得2E—女<x<2kn+—(keZ),
26233
又xe[0,7i],所以g(x)在[0,可上的增區(qū)間為0,j.
人兀,t八5兀~,兀8兀
②令%+—=t,因?yàn)椴弧?,—-,所以
6263
由g(%)二相得sinx+—=2m,即sin/=2m.
5兀
因?yàn)榉匠蘥(x)=加在1e0,—上有四個不相等的實(shí)數(shù)根外演,大4(%</<演(%),
兀8兀/、
所以方程sin%=2根在/6—上有四個不相等的實(shí)數(shù)根%/,匕(4〈/2V匕</4),
63
/o5
所以?2加<1,且4+方2=—x2=7l,力3+*4=><2=5兀,
222
LLtI兀兀兀7cLLLI16兀
所以石H-------F%2-----=兀,----FXH------5兀,所以玉+%+%3+%4=---------,
666463
所以tan(石+%+&+/)=6.
斗
y=2m
一為丁廣
■[一
尸sinf2J
19.已知兩個函數(shù)y=/(x),XGD],y=F(x),xeQ若對任意的西?R,存在唯一
的馬62,使得/(%)產(chǎn)(々)=1成立,則稱尸(X)為/(%)的“友好函數(shù)”.
⑴判斷函數(shù)G(x)=cosx,]?0,兀]是否為8(/)=5山工,xe[0,兀]的“友好函數(shù)”,
并說明理由;
⑵若函數(shù)〃(x)=log2x,xe[m,n\>h^x)=2X,%e[-2,-1]的“友好函數(shù)”,求
〃一根的最小值;
kx1'(兀、
(3)已知函數(shù)。(x)=log2[0,m],q(x)=sin兀x--7
(爐+44J3J
無e—,若Q(x)是q(x)的“友好函數(shù)”,且q(x)也是Q(x)的“友好函數(shù)”,求實(shí)數(shù)
,的值及7〃-女的最大值.
解:(1)G(x)=cosx,%?0,兀]不是8(%)=5111],%?0,兀]的“友好函數(shù)”,理由如下:
取與=。?0,兀],因?yàn)間(0)=0,所以不存在々耳0,可,使得G(/)g(0)=l,
所以G(x)=cosx,xe[0,7i]g(x)=sinx,xw[0,兀]的“友好函數(shù)”.
(2)由題意,對任意占£。1,存在唯一々e2使秋石)H(電)=1成立,
即”(6點(diǎn)1
,所以函數(shù)的值域是函數(shù)H(x)值域的子集.
h(x)
因?yàn)榫W(wǎng)力=23%G[-2,-1],所以意e[2,4],其值域?yàn)閇2,4],
而7/(x)=log2X在X£[m,可上單調(diào)遞增,故值域?yàn)閇log2m,log2n\,
log2m<20<m<4
從而<即《所以(“一利)揄=12.
log2n>4n>16
(3)當(dāng)。(%)是q(x)的“友好函數(shù)”時,
由題意,對任意的西€£>1,存在唯一的々el)?,使4(玉)Q(/)=l成立,
即°口2)=此j,則的值域是值域的子集,
當(dāng)q(x)是。(尤)的“友好函數(shù)”時,
由題意,對任意的々e3,存在唯一的占cR使Q(X2)q(%)=l成立,
即以彌=。(9),則Q(力的值域是]右值域的子集.
/、1
所以Q(x)的值域與一「h值域相同(且值域中的數(shù)值一一對應(yīng)).
71
當(dāng)。(x)是q(x)的“友好函數(shù)”時,因?yàn)閝
6
若存在西€
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人保入司考試題庫
- 2025年icu考試題目及答案
- 2025年勘察理賠員考試題庫
- 2025年部隊(duì)園林技術(shù)考試題庫
- 2025年電網(wǎng)維修招聘考試題庫
- 2025年羊羊考試題庫
- 2025年郵電bim高級考試題庫
- 2025年鐵路無憂考試題庫
- 2025年公安司法素質(zhì)考試題庫
- 2025年重慶評標(biāo)考試題庫
- 產(chǎn)前檢查與孕期保健
- 《建設(shè)工程施工合同(示范文本)》(GF-2017-0201)條款
- 個人退款申請書范文
- 2025年云南能投新能源產(chǎn)業(yè)園區(qū)投資開發(fā)有限公司招聘筆試參考題庫附帶答案詳解
- 第十章《浮力》達(dá)標(biāo)測試卷(含答案)2024-2025學(xué)年度人教版物理八年級下冊
- 2025年中國礦產(chǎn)資源集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 從臨床到教育兒童中醫(yī)課程的開發(fā)與推廣匯報
- 銀行安全保衛(wèi)知識競賽題庫及答案(300題)
- 建筑施工現(xiàn)場危廢管理辦法
- 《信息報送培訓(xùn)》課件
- 品管圈PDCA獲獎案例-心內(nèi)科降低心肌梗死患者便秘發(fā)生率醫(yī)院品質(zhì)管理成果匯報
評論
0/150
提交評論