




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
交通管理車(chē)輛檢測(cè)技術(shù)英文翻譯Abstract1.IntroductionTheglobalpopulationlivingincitiesisexpectedtoreach68%by2050,accordingtotheUnitedNations.Thisrapidurbanizationhasledtoasurgeinmotorvehicleownership,resultinginseveretrafficcongestion,frequentaccidents,andincreasedairpollution.Forexample,trafficcongestioncoststheUnitedStatesapproximately$124billionannuallyinlostproductivityandfuel,asreportedbytheTexasA&MTransportationInstitute.Toaddresstheseissues,IntelligentTransportationSystems(ITS)haveemergedasakeysolution,andvehicledetectiontechnologyisthecoreofITS.Thisarticleaimsto:(1)systematicallyreviewtheprinciplesandcharacteristicsofvariousvehicledetectiontechnologies;(2)analyzetheirapplicationsintrafficmanagement;(3)discusscurrentchallengesandfuturedirections.2.MainstreamVehicleDetectionTechnologies2.1Sensor-BasedTechnologies2.1.1RadarRadarworksbytransmittingelectromagneticwavesandreceivingthereflectedsignalsfromvehicles.TheDopplereffectisusedtocalculatethevehicle’sspeed,whilethetimedelaybetweentransmissionandreceptionisusedtodeterminethedistance.Radarcanbedividedintomillimeter-wave(mmWave)radar(24–77GHz)andultrawideband(UWB)radar(3.1–10.6GHz).Advantages:不受光線andweatherconditions(e.g.,rain,fog,night)影響;longdetectionrange(uptoseveralhundredmeters);highaccuracyinmeasuringspeedanddistance.Limitations:Lowresolution(difficulttodistinguishsmallobjectsormultiplevehicles);vulnerabletointerferencefromotherelectromagneticdevices.ApplicableScenarios:Trafficflowmonitoringonhighways;speeddetection;collisionwarning.2.1.2LidarLidaremitslaserpulsesandmeasuresthetimeittakesforthepulsestoreflectoffavehicletocalculatedistance.Itgeneratesa3Dpointcloudoftheenvironment,whichcanbeusedtodeterminethevehicle’sposition,size,andshape.Lidarisclassifiedintomechanicallidar(withrotatingparts)andsolid-statelidar(withoutrotatingparts).Advantages:Highresolution(candistinguishpedestrians,cyclists,andvehicles);accurate3Dpositioning;unaffectedbyambientlight.Limitations:Highcost(mechanicallidar);shortrangeinadverseweather(e.g.,heavyrain,fog);susceptibilitytodirtanddebrisonthelens.ApplicableScenarios:Advanceddriverassistancesystems(ADAS);autonomousvehicles;high-precisiontrafficmonitoring.2.1.3UltrasonicSensorsUltrasonicsensorsemithigh-frequencysoundwaves(20–100kHz)anddetectthereflectedwavesfromvehicles.Thetimedelayisusedtocalculatethedistance.Advantages:Lowcost;easytoinstall;suitableforshort-rangedetection(upto5meters).Limitations:Shortrange;affectedbytemperatureandhumidity;unabletodetectfast-movingvehicles.ApplicableScenarios:Parkingassistance;low-speedtrafficmonitoringinparkinglots.2.1.4InductiveLoopsInductiveloopsareembeddedintheroadsurfaceanddetectvehiclesbymeasuringchangesintheelectromagneticfieldcausedbythevehicle’smetalbody.Advantages:Highreliability;lowmaintenancecost;suitableforhigh-trafficareas.Limitations:Destructiveinstallation(requirescuttingtheroad);unabletodetectnon-metalvehicles;difficulttodistinguishmultiplevehicles.ApplicableScenarios:Trafficflowmonitoringatintersections;tollcollection.BackgroundSubtraction:Separatesforeground(vehicles)frombackground(road)bymodelingthebackground.FeatureExtraction:UsesfeaturessuchasHistogramofOrientedGradients(HOG)orScale-InvariantFeatureTransform(SIFT)torepresentvehicles,followedbyclassificationusingSupportVectorMachines(SVM)orAdaboost.Limitations:Pooradaptabilitytoenvironmentalchanges(e.g.,light,weather);difficultyindetectingoccludedorsmallvehicles.2.2.2DeepLearning-BasedMethodsYOLO(YouOnlyLookOnce):Real-timedetectionwithhighspeed(upto100FPS)butslightlyloweraccuracy.FasterR-CNN:Highaccuracy(upto90%)butslowerspeed(around5FPS).EfficientDet:Balancesspeedandaccuracyusingaweightedbi-directionalfeaturepyramidnetwork(BiFPN).ApplicableScenarios:Traffic違法monitoring(e.g.,闖紅燈,逆行);vehicleclassification;pedestriandetection.2.3.1RFIDRFIDusesradiofrequencysignalstoidentifyvehiclesequippedwithRFIDtags.Thesystemconsistsoftags(attachedtovehicles),readers(installedonroadsorgantries),andabackenddatabase.Advantages:Highrecognitionspeed;unaffectedbylightandweather;suitableforstaticorlow-speedvehicles.Limitations:Shortrange(upto10metersforpassivetags);highcostforactivetags;requiresvehiclestobeequippedwithtags.ApplicableScenarios:Parkingmanagement(e.g.,automaticentry/exit);tollcollection;fleetmanagement.2.3.2V2XAdvantages:Real-timedataexchange;providespredictiveinformation(e.g.,vehicleintent);supportsvehicle-to-infrastructure協(xié)同.Limitations:Highdeploymentcost;requireswidespreadadoptionofon-boardunits(OBUs)androadsideunits(RSUs);dataprivacyconcerns.ApplicableScenarios:Intelligentsignalcontrol;collisionwarning;platooning.2.4Multi-SourceFusionTechnologiesApplicableScenarios:Autonomousdriving;high-precisiontrafficmonitoring;severeweatherconditions.3.ApplicationsofVehicleDetectionTechnologiesinTrafficManagementVehicledetectiontechnologiesarewidelyusedintrafficmanagementtoaddressvariouschallenges.Belowarethekeyapplicationscenarios:3.1TrafficFlowMonitoringTrafficflowmonitoringisthefoundationoftrafficmanagement.Itinvolvescollectingdataonvehiclevolume,speed,occupancy,anddensitytoanalyzetrafficconditionsandoptimizetrafficmanagementstrategies.UseCases:Highways:MmWaveradarisusedtomonitorreal-timetrafficflow,speed,andoccupancy.Thedataistransmittedtothetrafficmanagementcentertopredictcongestionandadjust限速.Benefits:Reducescongestion;improvesroadutilization;savesfuelandreducesemissions.3.2AccidentDetectionandResponseAccidentdetectioniscriticaltoreducingsecondaryaccidentsandimprovingemergencyresponseefficiency.Vehicledetectiontechnologiescanquicklyidentifyaccidents(e.g.,collisions,rollovers)andalertthetrafficmanagementcenter.UseCases:Highways:Lidarisusedtodetectvehiclecollisionsbyanalyzing3Dpointclouddata.Onceanaccidentisdetected,thesystemautomaticallyalertsthetrafficmanagementcenterandsetsup警示標(biāo)志inthe后方道路.UrbanRoads:Cameraswithdeeplearningalgorithmsareusedtodetectpedestriansbeinghitorvehiclesbreakingdown.Thesystemautomaticallycallsemergencyservicesandprovidesreal-time監(jiān)控錄像tohelp警方調(diào)查.Benefits:Shortensemergencyresponsetime;reducessecondaryaccidents;improvesroadsafety.3.3Traffic違法MonitoringTraffic違法monitoringusesvehicledetectiontechnologiestoidentifyandrecord違法行為(e.g.,闖紅燈,逆行,超速)forlawenforcement.UseCases:Speeding:Radarisusedtomeasurevehiclespeed.Ifavehicleexceedsthespeedlimit,thecameracapturesaphotoofthevehicle’s號(hào)牌.Benefits:Improves執(zhí)法效率;reducesmanualpatrols;deters違法行為.3.4ParkingManagementParkingmanagementinvolvesdetectingvehicleentry/exitandmonitoring車(chē)位occupancytoimproveparkingefficiency.UseCases:ResidentialParking:RFIDtagsareinstalledon業(yè)主vehicles.Thesystemautomatically識(shí)別業(yè)主車(chē)輛and抬桿放行.Benefits:Reducesparkingsearchtime;improvesparkinglotutilization;increasesrevenueforparkingoperators.3.5IntelligentSignalControlIntelligentsignalcontrolusesreal-timetrafficdatatoadjust信號(hào)燈配時(shí)dynamically,reducingvehiclewaitingtimeandimprovingintersection通行效率.UseCases:AdaptiveSignalControl:Camerasorradarmonitorreal-timetrafficflowatintersections.Thesignalcontrolleradjusts綠燈timebasedonthetrafficvolume(e.g.,increasing綠燈timeforthedirectionwithmorevehicles).Vehicle-to-Infrastructure(V2I)協(xié)同:Vehiclestransmittheirpositionandspeedtoroadsideunits(RSUs).Thesignalcontrollerusesthisinformationtooptimize信號(hào)燈配時(shí)(e.g.,givingprioritytoemergencyvehicles).Benefits:Reducesvehiclewaitingtime;improvesintersectionthroughput;reducesfuelconsumption.4.ChallengesandFutureDirectionsDespitethesignificantprogressinvehicledetectiontechnologies,therearestillseveralchallengesthatneedtobeaddressed.Additionally,emergingtechnologiesoffernewopportunitiesforfuturedevelopment.4.1CurrentChallenges4.1.1EnvironmentalAdaptabilityManyvehicledetectiontechnologiesareaffectedbyenvironmentalconditions:Camera:Rain,fog,andnightreducevisibility,makingitdifficulttodetectvehicles.Lidar:Heavyrainorsnowscatterslaserpulses,reducingdetectionrangeandaccuracy.Radar:Interferencefromotherelectromagneticdevices(e.g.,mobilephones)affectsperformance.4.1.2HighCostSomeadvancedtechnologiesaretooexpensiveforlarge-scaledeployment:Lidar:Mechanicallidarcostsseveralthousanddollars,whilesolid-statelidarisstillrelativelyexpensive.V2X:DeployingRSUsandOBUsrequiressignificantinvestment.4.1.3DataPrivacyandSecurity4.1.4AlgorithmEfficiency4.2FutureDirections4.2.1DevelopmentofNewSensors77GHzMmWaveRadar:77GHzmmWaveradarhashigherresolutionthantraditional24GHzradar,makingitsuitablefordetectingsmallobjects(e.g.,pedestrians).ThermalCameras:Thermalcamerasdetectheatemittedbyvehicles,makingthemunaffectedbylightandweather.Theyareparticularlyusefulfornightandfoggyconditions.4.2.2OptimizationofDeepLearningAlgor
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層選舉工作條例課件
- 初三道德與法治寬容包容品質(zhì)試卷及答案
- 不同全麻方式復(fù)合硝普鈉控制性降壓對(duì)腎功能影響的深度剖析
- Leber遺傳性視神經(jīng)病變與中醫(yī)體質(zhì)的關(guān)聯(lián)性探究:理論、臨床與展望
- 八年級(jí)數(shù)學(xué)統(tǒng)計(jì)圖表單元試卷及答案
- 基層員工安全知識(shí)培訓(xùn)課件
- 新解讀《GB-T 39740-2020自然保護(hù)地勘界立標(biāo)規(guī)范》
- 中醫(yī)洗頭測(cè)試題及答案
- 基礎(chǔ)燃燒學(xué)試題及答案
- 物業(yè)防疫試題及答案
- 薛氏醫(yī)案所載傷寒鈐法總結(jié)
- (高清版)TDT 1071-2022 園地分等定級(jí)規(guī)程
- 家政市場(chǎng)部話術(shù)
- 2024年遼寧交投集團(tuán)招聘筆試參考題庫(kù)附帶答案詳解
- 高考英語(yǔ)必背1500個(gè)真題高頻詞匯- 高考英語(yǔ)一輪復(fù)習(xí)
- 公司設(shè)計(jì)保密協(xié)議范本
- 人體足解剖學(xué)
- 機(jī)械基礎(chǔ) 第三版 課件 (郁志純)模塊三 機(jī)械零件的精度
- 臨床疼痛學(xué):疼痛診斷治療圖解
- 環(huán)境監(jiān)測(cè)儀器設(shè)備采購(gòu)?fù)稑?biāo)方案(技術(shù)標(biāo))
- 九年級(jí)下冊(cè)政治重點(diǎn)知識(shí)點(diǎn)
評(píng)論
0/150
提交評(píng)論