




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、古希臘數(shù)學家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(
)A. B. C. D.2、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(
)A. B. C. D.3、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20004、如圖,四邊形OABC是平行四邊形,點A的坐標為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數(shù)y=(x>0)的圖象經過C,D兩點,直線CD與y軸相交于點E,則點E的坐標為(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)5、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個6、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b二、多選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.2、如圖,下列條件能判定△ABC與△ADE相似的是(
)A. B.∠B=∠ADEC. D.∠C=∠AED3、利用反例可以判斷一個命題是錯誤的,下列命題錯誤的是(
)A.若,則 B.對角線相等的四邊形是矩形C.函數(shù)的圖象是中心對稱圖形 D.六邊形的外角和大于五邊形的外角和4、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.5、如圖所示,AB為斜坡,D是斜坡AB上一點,斜坡AB的坡度為i,坡角為,于點C,下面正確的有(
)A. B.C. D.6、下列各組圖形中相似的是(
)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形7、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,在RT△ABC中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當為直角三角形時,線段的長為________.2、如圖,二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),與y軸交于點C.下列結論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).3、如圖,某建筑物BC直立于水平地面,AC=9m,要建造階梯AB,使每階高不超過20cm,則此階梯最少要建_____階.(最后一階的高度不足20cm時,按一階算,取1.732)4、如圖,已知是⊙O的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.5、如圖,,,是⊙O上的三個點,四邊形是平行四邊形,連接,,若,則_____.6、如圖,在RT△ABC中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.7、如圖,平行四邊形ABCD中,,點的坐標是,以點為頂點的拋物線經過軸上的點A,B,則此拋物線的解析式為__________________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設OD=x.(1)如圖1,當點O為AC邊的中點時,求x的值;(2)如圖2,當點O與點C重合時,連接DF;求弦DF的長;(3)當半圓O與BC無交點時,直接寫出x的取值范圍.2、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.3、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.4、2022年冬奧會在北京召開,某網絡經銷商購進了一批以冬奧會為主題的文化衫進行銷售,文化衫的進價為每件30元,當銷售單價定為70元時,每天可售出20件,每銷售一件需繳納網絡平臺管理費2元,為了擴大銷售,增加盈利,決定采取適當?shù)慕祪r措施,經調查發(fā)現(xiàn):銷售單價每降低1元,則每天可多售出2件(銷售單價不低于進價),若設這款文化衫的銷售單價為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式;(2)當銷售單價為多少元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、解方程與計算(1)
(2)計算:.-參考答案-一、單選題1、A【解析】【分析】作AF⊥BC,根據等腰三角形ABC的性質求出AF的長,再根據黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質、勾股定理的應用以及三角形的面積公式,求出DE和AF的長是解題的關鍵。2、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.3、D【解析】【分析】設二次函數(shù)的解析式為:y=ax2+bx+c,根據題意列方程組即可得到結論.【詳解】解:設二次函數(shù)的解析式為:y=ax2+bx+c,∵當x=55,y=1800,當x=75,y=1800,當x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點】本題考查了根據實際問題列二次函數(shù)關系式,正確的列方程組是解題的關鍵.4、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設C的坐標為(x,x),表示出D的坐標,將C、D兩點坐標代入反比例函數(shù)的解析式,解關于x的方程求出x即可得到點C、D的坐標,進而求得直線CD的解析式,最后計算該直線與y軸交點坐標即可得出結果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設C的坐標為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標為(3+x,),把C、D的坐標代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當x=0時,,∴點E的坐標為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質、運用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質.根據反比例函數(shù)圖象經過C、D兩點,得出關于x的方程是解決問題的關鍵.5、A【解析】【分析】根據已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質,熟練掌握相似三角形對應邊成比例是解本題的關鍵.6、C【解析】【分析】根據比例的性質“兩內項之積等于兩外項之積”對各選項分析判斷即可得.【詳解】解:A、∵,∴,∴,選項說法錯誤,不符合題意;B、∵,∴,∴,選項說法錯誤,不符合題意;C、∵,∴,選項說法正確,符合題意;D、∵,∴,選項說法錯誤,不符合題意;故選C.【考點】本題考查了比例的性質,解題的關鍵是熟記比例的性質.二、多選題1、ABD【解析】【分析】根據三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關鍵是熟練掌握三角形相似的判定方法.2、ABD【解析】【分析】利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對A、C進行判斷;根據有兩組角對應相等的兩個三角形相似可對B、C進行判斷.【詳解】解:∵∠EAD=∠BAC,當,∠A=∠A,∴△ABC∽△ADE,故選項A符合題意;當∠B=∠ADE時,△ABC∽△ADE,故選項B符合題意;C選項中角A不是成比例的兩邊的夾角,故選項C不符合題意;當∠C=∠AED時,△ABC∽△ADE,故選項D符合題意;故選:ABD.【考點】本題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.3、ABD【解析】【分析】根據有理數(shù)的乘法、矩形的判定定理、反比例函數(shù)的性質、多邊形的外角性質逐一判斷即可.【詳解】解:A、當b=0,a≠0時,則,該選項符合題意;B、如圖:四邊形ABCD的對角線AC=BD,但四邊形ABCD不是矩形,該選項符合題意;C、函數(shù)的圖象是中心對稱圖形,該選項不符合題意;D、多邊形的外角和都相等,等于360°,該選項符合題意;故選:ABD.【考點】本題考查了命題與定理的知識,解題的關鍵是了解判斷一個命題是假命題的時候可以舉出反例.4、ABD【解析】【分析】根據有兩組角對應相等的兩個三角形相似可對A、B、C進行判斷;根據兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.5、BCD【解析】【分析】根據坡度的定義解答即可.【詳解】交于點,交于點,,,,,,∴BCD正確.故選:BCD.【考點】本題考查了解直角三角形的應用-坡度坡角問題,熟記坡度的定義是解題的關鍵.6、BCD【解析】【分析】根據相似三角形的判定方法和等腰三角形的性質進行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據三組對應邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點】本題考查了相似三角形,解題的根據是掌握相似三角形的判定和等腰三角形的性質.7、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質以及相似三角形的判定和性質,證明DE∥BC是解題的關鍵.三、填空題1、或【解析】【分析】(1)分別在、、中應用含角的直角三角形的性質以及勾股定理求得,,再根據垂直平分線的性質、等邊三角形的判定和性質、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據垂直平分線的性質、全等三角形的判定和性質、分線段成比例定理可證得,然后根據平行線的性質、相似三角形的判定和性質列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設,則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當時,連接、交于點,過點作于,如圖2:設,則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質和判定、含角的直角三角形的性質、勾股定理、全等三角形的判定和性質、平行線的判定和性質、相似三角形的判定和性質、等邊三角形的判定和性質等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學思想.2、①④或④①【解析】【分析】根據拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質,數(shù)形結合是解題的關鍵.3、26.【解析】【詳解】在Rt△ABC中,根據tan30°=BC:AC,即可求得BC=tan30°×AC=×9m=3m≈5.192m=519.2cm.又因519.2÷20≈26,所以即至少為26階.4、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關知識點,本題的關鍵是求出∠COB=60°.5、64【解析】【分析】先根據圓周角定理求出∠O的度數(shù),然后根據平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質,熟練掌握圓周角定理是解答本題的關鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.6、3【解析】【分析】根據直角三角形的性質得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質,勾股定理,平行線分線段成比例,解題的關鍵是通過平行得到比例式.7、【解析】【分析】根據平行四邊形的性質得到CD=AB=4,即C點坐標為,進而得到A點坐標為,B點坐標為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標為∴A點坐標為,B點坐標為設函數(shù)解析式為,代入C點坐標有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質,和待定系數(shù)法求二次函數(shù)解析式,問題的關鍵是求出A點或B點的坐標.四、解答題1、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結論;(2)先利用等面積求出x知,再判斷出,進而求出DH,OH,最后用勾股定理求出DF,即可得出結論;(3)分兩種情況:點O在邊AC上和在AC的延長線上,找出分界點,求出x值,即可得出結論.【詳解】(1)在Rt△ABC中,AB=10,根據勾股定理得,,∵點O為AC邊的中點,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點D作DH⊥AC于H,∵點O與點C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據勾股定理得,∴.(3)如圖,當點O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當點O在AC的延長線上,且半圓O與AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即滿足條件的x取值范圍為:0<x<3或x>12.【考點】此題是圓的綜合題,主要考查了勾股定理,相似三角形的判定和性質,用分類討論的思想和方程的思想解決問題是解本題的關鍵.2、(1),;(2)當y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結合的思想,分析兩個函數(shù)圖象的位置,根據交點的橫坐標確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達式為:將,代入中,得:解得:∴一次函數(shù)y1的表達式為:(2)由圖象可知,當時,反比例函數(shù)圖象應在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設直線AB與x軸的交點為D,如下圖:∵延長AO交反比例函數(shù)圖象于點C∴點C與點A關于原點對稱∴設直線AB交x軸的交點為D將代入∴∴又∵∴即:∴∵點P在x軸上∴或【考點】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過圖象交點情況確定滿足條件的自變量取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新解讀《GB-T 39161-2020行業(yè)循環(huán)經濟實踐技術指南編制通則》
- 新解讀《GB-T 3221-2020內燃機動力內河船舶系泊和航行試驗大綱》
- 西師大版數(shù)學四年級上冊 第一單元測試卷(B)(含解析)
- 內部審計測試試題及答案
- 漓江銀行筆試題目及答案
- 2025年監(jiān)理工程師理論與法規(guī)真題與標準答案
- 2025年國家電網校招面試試題及答案
- 工業(yè)制造智能制造技術應用及產業(yè)升級研究報告
- 農業(yè)種植項目機械設備租賃合同
- 2025年安陽駕校教練員考試題庫
- 倉儲中暑應急演練預案方案
- 基準物質和標準物質
- 渠道一百軟件2012戰(zhàn)略合作伙伴推廣計劃課件
- 2023年邢臺沙河市體育教師招聘筆試模擬試題及答案
- GB/T 18742.3-2017冷熱水用聚丙烯管道系統(tǒng)第3部分:管件
- GB/T 16866-2006銅及銅合金無縫管材外形尺寸及允許偏差
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗
- 房產稅、土地使用稅、印花稅政策課件
- PDCA降低I類切口感染發(fā)生率
- 合肥國際馬拉松志愿者培訓
- 【美國俚語】英語俚語大全200個
評論
0/150
提交評論