強(qiáng)化訓(xùn)練安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克試卷(詳解版)_第1頁
強(qiáng)化訓(xùn)練安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克試卷(詳解版)_第2頁
強(qiáng)化訓(xùn)練安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克試卷(詳解版)_第3頁
強(qiáng)化訓(xùn)練安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克試卷(詳解版)_第4頁
強(qiáng)化訓(xùn)練安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克試卷(詳解版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,≌,和是對應(yīng)角,和是對應(yīng)邊,則下列結(jié)論中一定成立的是()A. B.C. D.2、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,103、如圖,在中,已知點,,分別為,,的中點,且,則的面積是()A. B.1 C.5 D.4、在下列長度的四根木棒中,能與3cm,9cm的兩根木棒首尾順次相接釘成一個三角形的是()A.3cm B.6cm C.10cm D.12cm5、將一副三角板按如圖所示的方式放置,使兩個直角重合,則∠AFD的度數(shù)是()A.10° B.15° C.20° D.25°6、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,7、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D8、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.49、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.10、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________2、兩角和它們的夾邊分別相等的兩個三角形全等(可以簡寫成_____).3、如圖,AC,BD相交于點O,若使,則還需添加的一個條件是_____________.(只要填一個即可)4、在△ABC中,三邊為、、,如果,,,那么的取值范圍是_____.5、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.6、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.7、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).8、已知a,b,c是的三條邊長,化簡的結(jié)果為_______.9、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設(shè)的面積為,的面積為,則______.10、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.三、解答題(6小題,每小題10分,共計60分)1、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當(dāng)點P到達(dá)點A時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(s).連接PQ,當(dāng)線段PQ經(jīng)過點C時,直接寫出t的值為.2、人教版初中數(shù)學(xué)教科書八年級上冊第36、37頁告訴我們作一個角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O(shè)為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應(yīng)的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS3、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.4、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);(2)當(dāng)點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.5、如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于點D,CE交BF于點M.求證:(1)EC=BF;(2)EC⊥BF.6、如圖,在中,,于點,,平分交于點,的延長線交于點.求證:.-參考答案-一、單選題1、D【分析】根據(jù)全等三角形的性質(zhì)求解即可.【詳解】解:∵≌,和是對應(yīng)角,和是對應(yīng)邊,∴,,∴,∴選項A、B、C錯誤,D正確,故選:D.【點睛】本題考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答的關(guān)鍵.2、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.3、B【分析】根據(jù)三角形面積公式由點為的中點得到,同理得到,則,然后再由點為的中點得到.【詳解】解:點為的中點,,點為的中點,,,點為的中點,.故選:.【點睛】本題考查了三角形的中線與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線把三角形的面積平均分成兩半.4、C【分析】設(shè)第三根木棒的長度為cm,再確定三角形第三邊的范圍,再逐一分析各選項即可得到答案.【詳解】解:設(shè)第三根木棒的長度為cm,則所以A,B,D不符合題意,C符合題意,故選C【點睛】本題考查的是三角形的三邊的關(guān)系,掌握“利用三角形的三邊關(guān)系確定第三邊的范圍”是解本題的關(guān)鍵.5、B【分析】根據(jù)三角板各角度數(shù)和三角形的外角性質(zhì)可求得∠BFE,再根據(jù)對頂角相等求解即可.【詳解】解:由題意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故選:B.【點睛】本題考查三角板各角的度數(shù)、三角形的外角性質(zhì)、對頂角相等,熟知三角板各角的度數(shù),掌握三角形的外角性質(zhì)是解答的關(guān)鍵.6、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.7、B【分析】利用全等三角形的判定方法對各選項進(jìn)行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當(dāng)∠BAD=∠ABC時,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;B、當(dāng)∠BAC=∠ABD時,根據(jù)“SAS”可判斷△ABC≌△BAD,該選項符合題意;C、當(dāng)∠DAC=∠CBD時,由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;故選:B.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.8、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.9、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.10、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.二、填空題1、1【分析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.2、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.3、OA=OD或AB=CD或OB=OC【分析】添加條件是,根據(jù)推出兩三角形全等即可.【詳解】解:,理由是:在和中,,理由是:在和中,,理由是:在和中,故答案為:OA=OD或AB=CD或OB=OC.【點睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵是掌握全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件,若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.4、4<x<28【分析】根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊解答即可;【詳解】解:由題意得:解得:4<x<28.故答案為:4<x<28【點睛】本題考查了三角形三邊的關(guān)系,熟練掌握三角形三邊的關(guān)系是解題的關(guān)鍵.5、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.6、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.7、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當(dāng)BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當(dāng)BE=nCE時,S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.8、2b【分析】由題意根據(jù)三角形三邊關(guān)系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關(guān)系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.9、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關(guān)的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關(guān)鍵.10、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.三、解答題1、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質(zhì)可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當(dāng)線段PQ經(jīng)過點C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.2、(1)CD,O′D′,△OCD,(2)③【分析】(1)根據(jù)SSS證明△D′O′C′≌△DOC,可得結(jié)論;(2)根據(jù)SSS證明三角形全等.(1)證明:由作圖可知,在△D′O′C′和△DOC中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB.故答案為:CD,O′D′,△OCD,(2)解:上述證明過程中利用三角形全等的方法依據(jù)是SSS,故答案為:③【點睛】本題考查三角形綜合題,考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題.3、見解析【分析】利用AAS即可證明△ABO≌△EDO.【詳解】證明:∵AB⊥BE,DE⊥AD,∴∠B=∠D=90°.在△ABO和△EDO中,∴△ABO≌△EDO.【點睛】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.4、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(2)設(shè)∠BAD=x,根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(3)設(shè)∠BAD=x,仿照(2)的解法計算.【詳解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論