基礎(chǔ)強化海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)試卷(解析版)_第1頁
基礎(chǔ)強化海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)試卷(解析版)_第2頁
基礎(chǔ)強化海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)試卷(解析版)_第3頁
基礎(chǔ)強化海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)試卷(解析版)_第4頁
基礎(chǔ)強化海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)試卷(解析版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

海南省文昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、△ABC的三邊長a,b,c滿足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(

)A.65 B.60 C.30 D.262、如圖,由6個相同小正方形組成的網(wǎng)格中,A,B,C均在格點上,則∠ABC的度數(shù)為(

)A.45° B.50° C.55° D.60°3、如圖,點,在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個動點,記的最小值為,的最大值為,則的值為(

)A.160 B.150 C.140 D.1304、《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.5、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.456、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(

)A. B. C.3 D.7、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(

)A.29 B.32 C.36 D.45第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.2、《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長,若設(shè)AC=x,則可列方程為________________.3、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.4、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.5、如圖,在矩形中,,垂足為點.若,,則的長為______.6、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.7、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側(cè)距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).8、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應(yīng)點,延長交于點,經(jīng)測量,,則的面積為______.三、解答題(7小題,每小題10分,共計70分)1、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個取水點H(A,H,B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請通過計算加以說明;(2)求原來的路線AC的長.2、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當AC⊥BN時,求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運動,當運動到AC時,求BD的長;(3)動點C在射線BN上運動,求△ABD周長最小值.3、如圖,高速公路上有A,B兩點相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點A,CB⊥AB于B,現(xiàn)要在AB上建一個服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長.4、如圖,某海岸線MN的方向為北偏東75°,甲,乙兩船分別向海島C運送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.5、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.6、我國古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)7、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.-參考答案-一、單選題1、C【解析】【分析】首先根據(jù)非負數(shù)的性質(zhì)可得a-5=0,b-12=0,c-13=0,進而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點】此題主要考查了非負數(shù)的性質(zhì),以及勾股定理逆定理,熟練掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,利用非負數(shù)性質(zhì)求出a、b、c的值是解題的關(guān)鍵.2、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點】本題考查了等腰三角形,勾股定理的逆定理,解決問題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運用勾股定理的逆定理判斷直角三角形.3、A【解析】【分析】作點A關(guān)于直線MN的對稱點,連接交直線MN于點P,則點P即為所求點,過點作直線,在根據(jù)勾股定理求出線段的長,即為PA+PB的最小值,延長AB交MN于點,此時,由三角形三邊關(guān)系可知,故當點P運動到時最大,過點B作由勾股定理求出AB的長就是的最大值,代入計算即可得.【詳解】解:如圖所示,作點A關(guān)于直線MN的對稱點,連接交直線MN于點P,則點P即為所求點,過點作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長AB交MN于點,∵,,∴當點P運動到點時,最大,過點B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點】本題考查了最短線路問題和勾股定理,解題的關(guān)鍵是熟知兩點之間線段最短及三角形的三邊關(guān)系.4、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.5、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關(guān)系是解決問題的關(guān)鍵.6、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.7、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認真觀察,分別兩次運用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.二、填空題1、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.2、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.3、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵4、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關(guān)鍵是利用輔助線構(gòu)造三角形全等.5、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.6、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.7、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來根據(jù)兩點之間線段最短,可知CF的長即為所求;然后結(jié)合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關(guān)最短路徑的問題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;8、##【解析】【分析】根據(jù)題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.三、解答題1、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點到直線的距離中,垂線段最短);(2)設(shè)AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點】本題主要考查了勾股定理的應(yīng)用,靈活應(yīng)用勾股定理的逆定理和定理是解答本題的關(guān)鍵.2、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時BD+AC'有最小值即為AF,此時△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時BD的長為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時BD+AC'有最小值即為AF,∴此時△ABD周長=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時△ABD周長為:+4.【考點】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.3、4km【解析】【分析】根據(jù)題意設(shè)出BE的長為xkm,再由勾股定理列出方程求解即可.【詳解】解:設(shè)BE=xkm,則AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由題意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的長是4km.【考點】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解本題的關(guān)鍵.4、【解析】【分析】過點C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進而求得AC的長.【詳解】解:過點C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識點,掌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論