




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江蘇省東臺市中考數(shù)學真題分類(平行線的證明)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,則∠DCB的度數(shù)為(
)A.75° B.65°C.40° D.30°2、如圖,點D、E分別在線段BC、AC上,連接AD、BE.若∠A=35°,∠B=25°,∠1=70°,則∠C的大小為()A.40° B.50° C.75° D.85°3、如圖,直線a,b被直線c所截,下列條件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠34、如圖,已知,為保證兩條鐵軌平行,添加的下列條件中,正確的是(
)A. B. C. D.5、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.6、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.7、在中,,則為(
)三角形.A.銳角 B.直角 C.鈍角 D.等腰8、一把直尺和一塊三角板(含、角)如圖所示擺放,直尺一邊與三角板的兩直角邊分別交于點和點,另一邊與三角板的兩直角邊分別交于點和點,且,那么的大小為()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于點D1,∠ABD1與∠ACD1的角平分線交于點D2,則∠BD2C的度數(shù)是_____.2、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.3、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.4、如圖,,的平分線交于點,是上的一點,的平分線交于點,且,下列結(jié)論:①平分;②;③與互余的角有個;④若,則.其中正確的是________.(請把正確結(jié)論的序號都填上)5、如圖所示,請你填寫一個適當?shù)臈l件:_____,使AD∥BC.6、用一組整數(shù)a,b,c的值說明命題“若a>b>c,則a+b>c”是錯誤的,這組值可以是a=__,b=__,c=__.7、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點M,∠ACB的角平分線與BM的反向延長線交于點N,若在△CMN中存在一個內(nèi)角等于另一個內(nèi)角的2倍,則∠A的度數(shù)為_______三、解答題(7小題,每小題10分,共計70分)1、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C2、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點為,,求的度數(shù).(2)如圖,和分別平分和,當點在直線上時,且B、P、D三點共線,,則_________.(3)在(2)的基礎上,當點在直線外時,如下圖:,,求的度數(shù).3、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).4、如圖,已知,垂足為點N,與交于點M.求證:.(用反證法證明)5、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大??;(2)若∠A=60°,求∠BOC的大??;(3)直接寫出∠A與∠BOC的關系是∠BOC=.(用∠A表示出來)6、如圖,在三角形ABC中CD為的平分線,交AB于點D,,.(1)求證:;(2)如果,,試證明.7、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.-參考答案-一、單選題1、B【解析】【分析】直接利用全等三角形的性質(zhì)得出對應角相等進而求出答案.【詳解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故選:B.【考點】此題主要考查了全等三角形的性質(zhì),正確得出對應角的度數(shù)是解題關鍵.2、B【解析】【分析】根據(jù)三角形內(nèi)角和定理可求出的大小,再根據(jù)三角形外角性質(zhì)即可求出的大?。驹斀狻俊撸?,∴,∴.故選B.【考點】本題考查三角形內(nèi)角和定理和三角形外角的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關鍵.3、D【解析】【分析】根據(jù)同位角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;內(nèi)錯角相等,兩直線平行,進行判斷即可.【詳解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故選D.【考點】本題主要考查了平行線的判定,熟記平行線的判定方法是解題的關鍵.解答此類要判定兩直線平行的題,可圍繞截線找同位角、內(nèi)錯角和同旁內(nèi)角.4、C【解析】【分析】根據(jù)平行線的判定方法進行判斷即可.【詳解】解:A.∠1與∠2是鄰補角,無法判斷兩條鐵軌平行,故此選項不符合題意;B.∠1與∠3與兩條鐵軌平行沒有關系,故此選項不符合題意;C.∠1與∠4是同位角,且∠1=∠4=90°,故兩條鐵軌平行,所以該選項正確;D.∠1與∠5與兩條鐵軌平行沒有關系,故此選項不符合題意;故選:C.【考點】本題主要考查了平行線的判定,熟練掌握平行線的判定是解答本題的關鍵.5、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解答的關鍵.6、B【解析】【分析】首先根據(jù)三角形內(nèi)角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質(zhì)得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內(nèi)角和的運用,熟練掌握,即可解題.7、B【解析】【分析】根據(jù)分別設出三個角的度數(shù),再根據(jù)三角形的內(nèi)角和為180°列出一個方程,解此方程即可得出答案.【詳解】∵∴可設∠A=x,∠B=2x,∠C=3x根據(jù)三角形的內(nèi)角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案選擇B.【考點】本題主要考查的是三角形的基本概念.8、B【解析】【分析】先利用三角形外角性質(zhì)得到∠FDE=∠C+∠CED=140°,然后根據(jù)平行線的性質(zhì)得到∠BFA的度數(shù).【詳解】,∵,∴.故選B.【考點】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.二、填空題1、84°##84度【解析】【分析】利用角平分線的定義∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根據(jù)三角形的內(nèi)角和定理以及,再把∠A代入即可求∠BD2C的度數(shù).【詳解】解:∵BD1、CD1分別平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分別平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),當∠A=52°時,∠BD2C=180°-×(180°-52°),=84°.故答案為84°.【考點】此題考查三角形內(nèi)角和定理,解題關鍵在于利用角平分線的定義進行有關計算.2、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質(zhì)定理:全等三角形的對應角相等,三角形的內(nèi)角和定理.3、55【解析】【分析】根據(jù)三角形內(nèi)角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數(shù)即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內(nèi)角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關三角形角的計算問題.主要考察三角形內(nèi)角和定理的應用和計算,找到∠A所在的三角形是關鍵.4、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判斷①正確;由CB平分∠ACF、AE∥CF及①的結(jié)論可判斷②正確;由前兩個的結(jié)論可對③作出判斷;由AE∥CF及AC∥BG、三角形外角的性質(zhì)可求得∠BDF,從而可對④作出判斷.【詳解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正確∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正確∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴與∠DBE互余的角共有4個故③錯誤∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°?α∴∠BDF=∠GBD+∠BGD=故④錯誤即正確的結(jié)論有①②故答案為:①②【考點】本題考查了平行線的判定與性質(zhì),互余概念,垂直的定義,角平分線的性質(zhì)等知識,掌握這些知識并正確運用是關鍵.5、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補,兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.6、
-2
-3
-4【解析】【分析】根據(jù)題意選擇a、b、c的值,即可得出答案,答案不唯一.【詳解】解:當a=﹣2,b=﹣3,c=﹣4時,﹣2>﹣3>﹣4,則(﹣2)+(﹣3)<(﹣4),∴命題若a>b>c,則a+b>c”是錯誤的;故答案為:﹣2,﹣3,﹣4.【考點】本題考查了命題與定理,要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.7、或或【解析】【分析】根據(jù),的角平分線交于點,可求得,延長至,根據(jù)為的外角的角平分線,可得是的外角的平分線,根據(jù)平分,得到,則有,可得,可求得;再根據(jù),分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點,∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數(shù)是或或.【考點】本題是三角形綜合題,考查了三角形內(nèi)角和定理、外角的性質(zhì),角平分線定義等知識;靈活運用三角形的內(nèi)角和定理、外角的性質(zhì)進行分類討論是解題的關鍵.三、解答題1、垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.【解析】【分析】根據(jù)垂直求出∠BDC=∠EFC=90°,根據(jù)平行線的判定得出BD∥EF,根據(jù)平行線的性質(zhì)得出∠2=∠3,求出∠1=∠3,根據(jù)平行線的判定得出DG∥BC即可.【詳解】證明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定義∴BD∥EF,∴∠2=∠3(兩直線平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥BC,∴∠ADG=∠C.兩直線平行,同位角相等【考點】本題考查了平行線的性質(zhì)和判定,能熟練地運用定理進行推理是解此題的關鍵,注意:平行線的性質(zhì)有:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯角相等,③兩直線平行,同旁內(nèi)角互補,反之亦然.2、(1);(2);(3).【解析】【分析】(1)根據(jù)對頂角相等以及四邊形的內(nèi)角和進行判斷即可;(2)法一:根據(jù)以及和分別平分和,算出和,從而算出;法二:根據(jù)三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:連接AC,根據(jù)三角形的內(nèi)角和與角平分線的性質(zhì)分別求出,,故可求解;法二:連接BD并延長到G根據(jù)三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【詳解】(1)如圖邊上的高所在直線和邊上的高所在直線的交點為∴又∵∴∵在四邊形中,內(nèi)角和為∴.(2)法一:∵和分別平分和∴又∵∴∴∴.法二:連接BD,∵B、P、D三點共線∴BD、AF、CE交于P點∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分別平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°?100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC?(∠PAB+∠PCB)=100°?80°=20°.(3)法一:如圖:連接AC∵,∴∴又∵和分別平分和∴∴∴.法二:如圖,連接BD并延長到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考點】本題考查三角形的外角,角平分線的定義,三角形內(nèi)角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關鍵是熟練掌握相關基本性質(zhì).4、見解析.【解析】【分析】假設與不垂直,則,而,,則,這與相矛盾,由此即可證明.【詳解】證明:假設與不垂直,則,∵,∴,∴,這與相矛盾,∴.【考點】本題主要考查了反證法和平行線的性質(zhì),垂線的性質(zhì),解題的關鍵在于能夠熟練掌握相關知識進行求解.5、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據(jù)角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內(nèi)角和公式求解即可;(2)根據(jù)∠A=60°,結(jié)合三角形內(nèi)角和得出∠ABC+∠ACB=180°-∠A=120°,然后根據(jù)角平分線得出∠OBC=,∠OCB=,再利用三角形內(nèi)角和得出∠BOC=180°-∠OBC-∠OCB=180°-即可;(3)先根據(jù)平分線定義得出∠OBC=,∠OCB=,然后根據(jù)三角形內(nèi)角和公式得出∠BOC=180°-,再利用∠A表示即可.(1)解:∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°-26°-30°=124°;(2)解:∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=120°,∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-,=180°-60°=120°;(3)解:∠BOC=90°+.∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-=180°-=90°+.故答案為:90°+.【考點】本題考查三角形內(nèi)角和公式,角平分線定義,熟練掌握三角形內(nèi)角和公式,角平分線定義是解題關鍵.6、(1)見解析(2)見解析【解析】【分析】(1)先根據(jù)角平分線的定義求得∠ACB,進而說明∠ACB=∠3,然后運用同位角相等、兩直線平行即可證明;(2)先根據(jù)兩直線平行、內(nèi)錯角相等可得,進而得到∠BCD=∠2可得EF//DC,運用平行線的性質(zhì)可得∠BFE=∠BDC,最后結(jié)合即可證明.(1)證明:∵CD平分,(已知)∴(角平分線的定義)又∵(已知)∴(等量代換)∴.(2)證明:由(1)知(已證)∴(兩直線平行,內(nèi)錯角相等)又∵(已知)∴(等量代換)∴(同位角相等,兩直線平行)∴(兩直線平行,同位角相等)又∵(已知)∴(垂直的定義)∴(等量代換)∴(垂直的定義).【考點】本題主要考查了平行線的判定與性質(zhì)、角平分線的定義等知識點,靈活運用平行線線的判定與性質(zhì)成為解答本題的關鍵.7、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學三基《婦產(chǎn)科》考前點題卷二
- 2025年國家電網(wǎng)縣域供電所臺區(qū)經(jīng)理招聘面試模擬題及答案
- 2025年軍隊文職人員統(tǒng)一招聘面試( 防化)模擬題及答案
- 2025廚師用工合同格式
- 2025年法宣在線憲法學習試題庫及答案
- 2025年發(fā)展對象考試題庫與答案
- 2025合同管理與變更控制策略
- 2025年高溫危害試題及答案
- 地球運動說課課件
- 企業(yè)資產(chǎn)管理制度與維護清單
- 拆除重建工程施工方案
- 油田突發(fā)污染事件應急預案
- Codesys培訓課件教學課件
- 甲方業(yè)主項目管理手冊
- 句法 課件-初升高銜接英語課程
- 安裝聚氨酯冷庫板施工方案
- 醫(yī)院培訓課件:《黃帝內(nèi)針臨床運用》
- 崢嶸歲月 課件-2024-2025學年高中音樂人音版(2019) 必修 音樂鑒賞
- 《醫(yī)院醫(yī)療技術臨床應用管理制度》
- 建筑裝飾工程涂料施工技術考核試卷
- 2024年人社法律法規(guī)知識競賽考試題庫及答案
評論
0/150
提交評論