考點(diǎn)解析-河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試試卷(含答案詳解)_第1頁(yè)
考點(diǎn)解析-河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試試卷(含答案詳解)_第2頁(yè)
考點(diǎn)解析-河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試試卷(含答案詳解)_第3頁(yè)
考點(diǎn)解析-河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試試卷(含答案詳解)_第4頁(yè)
考點(diǎn)解析-河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省輝縣市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長(zhǎng)是(

)A.3cm B.6cm C.4cm D.5cm2、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點(diǎn)F,則BF的長(zhǎng)為(

)A. B. C. D.3、如圖,由6個(gè)相同小正方形組成的網(wǎng)格中,A,B,C均在格點(diǎn)上,則∠ABC的度數(shù)為(

)A.45° B.50° C.55° D.60°4、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),若,則的最小值為(

)A.2 B.3 C.4 D.55、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.66、有一個(gè)面積為1的正方形,經(jīng)過(guò)一次“生長(zhǎng)”后,在他的左右肩上生出兩個(gè)小正方形,其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過(guò)一次“生長(zhǎng)”后,變成了上圖,如果繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”,請(qǐng)你算出“生長(zhǎng)”了2020次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2021 C.2020 D.20197、已知直角三角形紙片的兩條直角邊長(zhǎng)分別為m和n(m<n),過(guò)銳角頂點(diǎn)把該紙片剪成兩個(gè)三角形,若這兩個(gè)三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點(diǎn)C與點(diǎn)A重合,折痕為DE,則△ABE的周長(zhǎng)為.2、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長(zhǎng)為15+9,則CD的長(zhǎng)為_(kāi)____.3、如圖,一架長(zhǎng)5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.4、在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)到原點(diǎn)的距離是_____.5、如圖,Rt△ABC中,∠C=90°,在△ABC外取點(diǎn)D,E,使AD=AB,AE=AC,且α+β=∠B,連結(jié)DE.若AB=4,AC=3,則DE=__.6、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點(diǎn)E,交CB于點(diǎn)F,點(diǎn)F是的中點(diǎn).若的面積為12,,則點(diǎn)F到AC的距離為_(kāi)_____.7、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長(zhǎng)是________________.8、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長(zhǎng)至少需______米.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.2、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.3、如圖,點(diǎn)是內(nèi)一點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說(shuō)明理由;(2)求的度數(shù).4、如圖,高速公路上有A,B兩點(diǎn)相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點(diǎn)A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長(zhǎng).5、《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語(yǔ)歡嬉.良工高士素好奇,算出索長(zhǎng)有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問(wèn)繩索有多長(zhǎng).”6、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹(shù)被折斷,樹(shù)的頂部落在離樹(shù)根8米處,即,求這棵樹(shù)在離地面多高處被折斷(即求AC的長(zhǎng)度)?7、如圖,某商家想在商場(chǎng)大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場(chǎng)規(guī)定廣告牌最高點(diǎn)不得高于地面20m,經(jīng)測(cè)量,測(cè)角儀支架高,在F處測(cè)得廣告牌底部點(diǎn)B的仰角為30°,在E處測(cè)得標(biāo)語(yǔ)牌頂部點(diǎn)A的仰角為45°,,請(qǐng)計(jì)算說(shuō)明,商家這樣放廣告牌是否符合規(guī)定?(圖中點(diǎn)A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))-參考答案-一、單選題1、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點(diǎn)】本題考查正方形的面積、勾股定理,解答本題的關(guān)鍵是明確正方形的面積是邊長(zhǎng)的平方.2、B【解析】【分析】由已知證得,進(jìn)而確定三個(gè)內(nèi)角的大小,求得,進(jìn)而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.3、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點(diǎn)】本題考查了等腰三角形,勾股定理的逆定理,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運(yùn)用勾股定理的逆定理判斷直角三角形.4、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時(shí),PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時(shí),PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.5、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.6、B【解析】【分析】根據(jù)勾股定理求出“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長(zhǎng)”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長(zhǎng)”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長(zhǎng)”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.7、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.二、填空題1、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長(zhǎng)=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長(zhǎng)=AB+BC=3+4=7.故答案是:7.【考點(diǎn)】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.2、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長(zhǎng)為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長(zhǎng)的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.3、0.8【解析】【分析】梯子的長(zhǎng)是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長(zhǎng)即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.4、【解析】【分析】根據(jù)兩點(diǎn)的距離公式計(jì)算求解即可.【詳解】解:由題意知點(diǎn)(3,﹣2)到原點(diǎn)的距離為故答案為:.【考點(diǎn)】本題考查了用勾股定理求解兩點(diǎn)的距離公式.解題的關(guān)鍵在于熟練掌握距離公式:、兩點(diǎn)間的距離公式為.5、5【解析】【分析】根據(jù)角度轉(zhuǎn)換,得到三角形ADE是直角三角形,然后運(yùn)用勾股定理計(jì)算出DE的長(zhǎng).【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點(diǎn)】本題主要考查到運(yùn)用勾股定理求長(zhǎng)度,說(shuō)明三角形ADE是直角三角形是解題的關(guān)鍵.6、【解析】【分析】過(guò)點(diǎn)F作FH⊥AC于點(diǎn)H,由翻折的性質(zhì)可知S△AA'D=24,由D為AB的中點(diǎn),則S△AA'B=2S△AA'D=48,得AA'=12,再通過(guò)AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長(zhǎng),最后通過(guò)面積法即可求出FH的長(zhǎng).【詳解】解:如圖,過(guò)點(diǎn)F作FH⊥AC于點(diǎn)H,根據(jù)翻折的性質(zhì)得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點(diǎn),∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點(diǎn),∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點(diǎn)F到AC的距離為,故答案為:.【考點(diǎn)】本題主要考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),運(yùn)用等積法求垂線段的長(zhǎng)是解題的關(guān)鍵.7、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點(diǎn)】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問(wèn)題的關(guān)鍵.8、2+2【解析】【分析】地毯的豎直的線段加起來(lái)等于BC,水平的線段相加正好等于AC,即地毯的總長(zhǎng)度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準(zhǔn)確理解題中地毯的長(zhǎng)度為水平與豎直的線段的和.三、解答題1、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見(jiàn)解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點(diǎn),∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點(diǎn)】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運(yùn)用勾股定理進(jìn)行計(jì)算是解(1)的關(guān)鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關(guān)鍵.2、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點(diǎn)】此題主要考查了勾股數(shù),關(guān)鍵是掌握勾股數(shù)定義.3、(1)是直角三角形,理由見(jiàn)解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD長(zhǎng),根據(jù)勾股逆定理可知的形狀;(2)由等邊三角形角的性質(zhì)和全等三角形角的性質(zhì)可知的度數(shù)【詳解】解:(1)是直角三角形理由如下:繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,,,,是等邊三角形,,又,,是直角三角形.(2)由(1)得,,是等邊三角形,,,.【考點(diǎn)】本題是三角形綜合題,主要考查了全等三角形的證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論