達標測試滬科版9年級下冊期末試卷必考附答案詳解_第1頁
達標測試滬科版9年級下冊期末試卷必考附答案詳解_第2頁
達標測試滬科版9年級下冊期末試卷必考附答案詳解_第3頁
達標測試滬科版9年級下冊期末試卷必考附答案詳解_第4頁
達標測試滬科版9年級下冊期末試卷必考附答案詳解_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張2、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.83、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉60°,射線BD與射線CE交于點P,在這個旋轉過程中有下列結論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④4、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.擲一枚骰子,向上一面的點數是6是不可能事件;D.任意畫一個三角形,其內角和是360°是不可能事件;5、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.67、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數是()A.個 B.個 C.個 D.個8、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,是由繞點O順時針旋轉30°后得到的圖形,若點D恰好落在AB上,且的度數為100°,則的度數是______.2、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.3、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.4、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黑球的概率是________.5、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關系是__________.6、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)7、已知⊙A的半徑為5,圓心A(4,3),坐標原點O與⊙A的位置關系是______.三、解答題(7小題,每小題0分,共計0分)1、對于平面直角坐標系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關聯(lián)點”.已知點,,,.(1)直線l經過點A,的半徑為2,在點A,C,D中,直線l和的“關聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關聯(lián)點”在直線上,請直接寫出b的取值范圍.2、在中,,,點E在射線CB上運動.連接AE,將線段AE繞點E順時針旋轉90°得到EF,連接CF.(1)如圖1,點E在點B的左側運動.①當,時,則___________°;②猜想線段CA,CF與CE之間的數量關系為____________.(2)如圖2,點E在線段CB上運動時,第(1)問中線段CA,CF與CE之間的數量關系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數量關系.3、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當點P在射線AB上運動時,試探求線段AB,PB,PF之間的數量關系,并給出證明.4、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數關系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉得到,點P是直線上一動點,連接,求的最小值.5、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數.在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F是的“成對關聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯(lián)點”,直接寫出點G的縱坐標的取值范圍.6、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉至圖2的位置,使得邊OP在的內部且平分,此時三角板OPQ旋轉的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉時,若OP在的內部.試探究與之間滿足什么等量關系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉,同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉,將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉,旋轉后的射線OB記為OE,射線OC平分,射線OD平分,當射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉,在OC與OD第二次相遇前,當時,直接寫出旋轉時間t的值.7、如圖1,O為直線DE上一點,過點O在直線DE上方作射線OC,∠EOC=130°.將直角三角板AOB(∠OAB=30°)的直角頂點放在點O處,一條邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞點O按每秒5°的速度逆時針旋轉一周,設旋轉時間為t秒.(1)如圖2,當t=4時,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)當三角板旋轉至邊AB與射線OE相交時(如圖3),試猜想∠AOC與∠BOE的數量關系,并說明理由;(3)在旋轉過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請直接寫出t的取值,若不存在,請說明理由.-參考答案-一、單選題1、A【分析】根據必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關鍵是理解必然事件指在一定條件下一定發(fā)生的事件.2、A【分析】過點作于點,連接,根據已知條件即可求得,根據含30度角的直角三角形的性質即可求得,根據勾股定理即可求得,根據垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質,垂徑定理,掌握以上定理是解題的關鍵.3、B【分析】根據,,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉性質,線段中點定義,三角形全等判定與性質,圓的切線,正方形判定與性質,勾股定理,銳角三角函數,弧長公式,本題難度大,利用輔助線最長準確圖形是解題關鍵.4、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.5、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內,把一個圖形繞某點旋轉,如果旋轉后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.6、B【分析】由切線的性質可推出,.再根據直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.7、D【分析】從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.8、B【分析】如圖所示,過C作CD⊥AB,交AB于點D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點D,在Rt△ABC中,AC=3cm,BC=4cm,根據勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點睛】此題考查了切線的性質,勾股定理,以及三角形面積求法,熟練掌握切線的性質是解本題的關鍵.二、填空題1、35°【分析】根據旋轉的性質可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】解:∵△COD是△AOB繞點O順時針旋轉30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點睛】本題考查了旋轉的性質,等腰三角形的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記各性質并準確識圖是解題的關鍵.2、【分析】根據題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設點,根據切線的性質及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質及勾股定理的應用,理解題意,作出相應圖形求出解析式是解題關鍵.3、5(4,0)【分析】(1)根據點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質,線段垂直平分線的性質,矩形的判定及勾股定理,正確作出圖形是解題的關鍵.4、【分析】根據概率公式計算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關鍵.5、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據CD=r=4.8cm,得出直線與的位置關系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關鍵.6、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.7、在⊙A上【分析】先根據兩點間的距離公式計算出OA,然后根據點與圓的位置關系的判定方法判斷點O與⊙A的位置關系.【詳解】解:∵點A的坐標為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,當點P在圓外?d>r;當點P在圓上?d=r;當點P在圓內?d<r.三、解答題1、(1)C(2)(3)【分析】(1)作出圖形,根據切線的定義結合“關聯(lián)點”即可求解;(2)根據題意,為等邊三角形,則僅與相切時,和有“關聯(lián)點”,進而求得半徑r的取值范圍;(3)根據關聯(lián)點以及切線的性質,直徑所對的角是直角,找到點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,進而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關聯(lián)點”是點故答案為:(2)如圖,根據題意與有“關聯(lián)點”,則與相切,且與相離,是等邊三角形為的中點,則當與相切時,則點為的內心半徑r的取值范圍為:(3)如圖,設和直線m的“關聯(lián)點”為,,交軸于點,是的切線,的圓心為點,半徑為t,軸是的切線點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,則點,在直線上,當直線與相切時,即當點與點重合時,最大,此時與軸交于點,當點運動到點時,則過點,則解得b的取值范圍為:【點睛】本題考查了切線的性質與判定,切線長定理,勾股定理,一次函數與坐標軸交點問題,等邊三角形的性質,等邊三角形的內心的性質,掌握以上知識是解題的關鍵.2、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性質可得出答案;②過點E作ME⊥EC交CA的延長線于M,由旋轉的性質得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,證明△FEC≌△AEM(SAS),由全等三角形的性質得出CF=AM,由等腰直角三角形的性質可得出結論;(2)過點F作FH⊥BC交BC的延長線于點H.證明△ABE≌△EHF(AAS),由全等三角形的性質得出FH=BE,EH=AB=BC,由等腰直角三角形的性質可得出結論;(1)①∵,,,∴,∵sin∠EAB=∴,故答案為:30°;②.如圖1,過點E作交CA的延長線于M,∵,,∴,∴,∴,∴,∵將線段AE繞點E順時針旋轉90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵為等腰直角三角形,∴,∴;故答案為:;(2)不成立.如圖2,過點F作交BC的延長線于點H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴為等腰直角三角形,∴.又∵,即.【點睛】本題考查了旋轉的性質,解直角三角形,等腰直角三角形的判定與性質,全等三角形的判定與性質,三角形的面積,熟練掌握旋轉的性質是解題的關鍵.3、(1)(2)PF=AB-PB或PF=AB+PB,理由見解析【分析】(1)根據△PBD等腰直角三角形,PB=2,求出DB的長,由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據同弧所對的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點P在點A、B之間,由(1)的圖根據同弧所對的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點P在點B的右側,如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,FP=AB-PB或PF=AB+PB.【點睛】本題考查了圓的性質,等腰直角三角形,三角形全等的判定,做題的關鍵是注意(2)的兩種情況.4、(1)(2)【分析】(1)根據運動重合部分不同情況分四種情況討論,①當時,②當時,③當時,④當時,根據三角形的面積公式求函數解析式即可.(2)作關于的對稱點,連接,過點作于點,過點作于點,設交于點,交于點,則的最小值即為的長,進而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當時,如圖,重疊部分面積為,設交于點,過點作于點,以每秒1個單位的速度沿向右運動,設,則在,,即解得②當時,如圖,重疊部分面積為四邊形的面積,設交于點,過點作于點,設交于點,,③當時,此時重疊面積為④當時,如圖,設交于點,此時重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關于的對稱點,連接,過點作于點,過點作于點,設交于點,交于點,則在中,則的最小值即為的長在中,設,,則中,為的中點,則,即的最小值為【點睛】本題考查了動點的函數問題,解直角三角形,(1)分類討論,(2)轉化線段是解題的關鍵.5、(1)B和C;(2);(3)【分析】(1)根據圖形可確定與點A組成的“成對關聯(lián)點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯(lián)點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯(lián)點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當點E在線段上時,有的“成對關聯(lián)點”∴;(3)如圖,當點G在上時,軸,在上不存在這樣的矩形;如圖,當點G在下方時,也不存在這樣的矩形;如圖,當點G在上方時,存在這樣的矩形GMNH,當恰好只能構成一個矩形時,設,直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當時,點G,H是的“成對關聯(lián)點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關聯(lián)點”的定義是解題的關鍵.6、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據OP平分得到∠PON,然后求出∠BOP即可;(2)先根據題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設在OC與OD第二次相遇前,當時,需要旋轉時間為t,再分OE在OC的左側和OE在OC的右側兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠PO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論