




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省沅江市中考數(shù)學真題分類(勾股定理)匯編綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.52、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(
)A.6 B.8 C.9 D.153、如圖,在矩形ABCD中,,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于F,,則(
)A. B.3 C. D.64、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(
)A.50cm B.120cm C.140cm D.100cm5、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.6、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.457、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.3第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.2、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.3、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.4、如圖,在中,,于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.5、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關于直線AE對稱,當△CD'E為直角三角形時,DE的長為__.6、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.7、設,是直角三角形的兩條直角邊長,若該三角形的周長為24,斜邊長為10,則的值為________.8、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.三、解答題(7小題,每小題10分,共計70分)1、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺風影響嗎?為什么?2、閱讀理解:【問題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個直角三角形的面積.從而得數(shù)學等式:(a+b)2=c2+4×ab,化簡證得勾股定理:a2+b2=c2.【初步運用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內折疊,如圖2,若a=4,b=6,此時空白部分的面積為;(3)如圖3,將這四個直角三角形緊密地拼接,形成風車狀,已知外圍輪廓(實線)的周長為24,OC=3,求該風車狀圖案的面積.(4)如圖4,將八個全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運用】如果用三張含60°的全等三角形紙片,能否拼成一個特殊圖形呢?帶著這個疑問,小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關系,寫出此等量關系式及其推導過程.3、如圖,小明家在一條東西走向的公路北側米的點處,小紅家位于小明家北米(米)、東米(米)點處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點處建一個快遞驛站,使最小,請確定點的位置,并求的最小值.4、一架梯子長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了7米到C,那么梯子的底端在水平方向滑動了幾米?5、我市《道路交通管理條例》規(guī)定:小汽車在城市街道上的行駛速度不得超過60km/h.如圖,一輛小汽車在一條城市街道上沿直道行駛,某一時刻剛好行駛到車速檢測點A正前方30m的C處,2秒后又行駛到與車速檢測點A相距50m的B處.請問這輛小汽車超速了嗎?若超速,請求出超速了多少?6、拖拉機行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機沿公路AB由點A向點B行駛,已知點C為一所學校,且點C與直線AB上兩點A,B的距離分別為150m和200m,又AB=250m,拖拉機周圍130m以內為受噪聲影響區(qū)域.(1)學校C會受噪聲影響嗎?為什么?(2)若拖拉機的行駛速度為每分鐘50米,拖拉機噪聲影響該學校持續(xù)的時間有多少分鐘?7、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內部的粗實線表示分割線),請你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應用:測量旗桿的高度:校園內有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測出了下列數(shù)據(jù):①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據(jù)所測得的數(shù)據(jù)設計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).-參考答案-一、單選題1、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關鍵.2、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.3、A【解析】【分析】根據(jù)折疊的性質,可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點】本題主要考查的是勾股定理的應用,靈活利用折疊進行發(fā)掘條件是解題的關鍵.4、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應用,理解題意,畫出圖形是解題的關鍵.5、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數(shù)構建方程解決問題.6、A【解析】【分析】設正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關系是解決問題的關鍵.7、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質定理及平移的性質,構建全等三角形是解答此題的關鍵.二、填空題1、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點】本題考查了勾股定理逆定理和三角形的面積應用,熟練掌握勾股定理逆定理是解題關鍵.2、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質得到AE=CE,進而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質,熟練掌握勾股定理是解答的關鍵.3、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.4、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質等,解題的關鍵是掌握折疊的性質,熟練使用勾股定理求線段長.5、3或6【解析】【分析】分兩種情況分別求解,(1)當∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質得∠AED=∠AED′=45′,得DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關的值,計算即可.【詳解】解:當∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質、勾股定理、軸對稱的性質,熟練掌握矩形的性質、勾股定理、軸對稱的性質的綜合應用,分情況討論,作出圖形是解題關鍵.6、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據(jù)翻折的性質得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質,全等三角形的判定與性質,勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.7、48【解析】【分析】由該三角形的周長為24,斜邊長為10可知a+b+10=24,再根據(jù)勾股定理和完全平方公式即可求出ab的值.【詳解】解:∵三角形的周長為24,斜邊長為10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的兩條直角邊,∴a2+b2=102,則a2+b2=(a+b)2?2ab=102,即142?2ab=102,∴ab=48.故答案為:48.【考點】本題主要考查了勾股定理,掌握利用勾股定理證明線段的平方關系及完全平方公式的變形求值是解題的關鍵.8、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關鍵是掌握折疊的性質,熟練運用勾股定理.三、解答題1、(1)90°;(2)受臺風影響,理由見解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而得出∠ACB的度數(shù);(2)利用三角形面積得出CD的長,進而得出海港C是否受臺風影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺風影響,理由:過點C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺風中心為圓心周圍250km以內為受影響區(qū)域,∴海港C受臺風影響.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.2、【初步運用】(1)5:9;(2)28;(3)24;(4);【遷移運用】a2+b2﹣ab=c2,證明見解析【解析】【分析】初步運用:(1)如圖1,求出小正方形的面積,大正方形的面積即可;(2)根據(jù)空白部分的面積=小正方形的面積﹣2個直角三角形的面積計算即可;(3)可設AC=x,根據(jù)勾股定理列出方程可求x,再根據(jù)直角三角形面積公式計算即可求解;(4)根據(jù)圖形的特征得出四邊形MNKT的面積設為x,將其余八個全等的三角形面積一個設為y,從而用x,y表示出S1,S2,S3,得出答案即可.遷移運用:根據(jù)大正三角形面積=三個全等三角形面積+小正三角形面積,構建關系式即可.【詳解】解:【初步運用】(1)由題意:b=2a,c=,∴小正方形面積:大正方形面積=5a2:9a2=5:9,故答案為:5:9;(2)空白部分的面積為=52﹣2××4×6=28,故答案為:28;(3)24÷4=6,設AC=x,依題意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面積為:×(3+1)×3×4=×4×3×4=24,故該飛鏢狀圖案的面積是24;(4)將四邊形MTKN的面積設為x,將其余八個全等的三角形面積一個設為y,∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=,故答案為:;[遷移運用]結論:a2+b2﹣ab=c2.理由:由題意:大正三角形面積=三個全等三角形面積+小正三角形面積,可得:(a+b)×k(a+b)=3××b×ka+×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【考點】本題考查勾股定理的證明和應用,根據(jù)圖形得出面積關系是解題的關鍵.3、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結論;(2)如圖,作點A關于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點A關于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點】本題考查軸對稱-最短問題,勾股定理,題的關鍵是學會利用軸對稱解決最短問題.4、(1)12米;(2)7米【解析】【分析】(1)由題意易得AB=CD=13米,OB=5米,然后根據(jù)勾股定理可求解;(2)由題意得CO=5米,然后根據(jù)勾股定理可得求解.【詳解】解:(1)由題意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:這個梯子的頂端距地面有12米高;(2)由題意得,AC=7米,由(1)得AO=12米,∴CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米∴BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑動了7米.【考點】本題主要考查勾股定理,熟練掌握勾股定理是解題的關鍵.5、超速了,超速了12km/h【解析】【分析】由勾股定理可求得小汽車行駛的距離,再除以小汽車行駛的時間即為小汽車行駛的車速,再與限速比較即可.【詳解】.解:由已知得∴在直角三角形ABC中AB2=AC2+BC2∴BC2=AB2-AC2=,又
∵72-60=12km/h∴這輛小汽車超速了,超速了12km/h.【考點】本題考查了勾股定理,其中1米/秒=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級數(shù)學(四則混合運算帶括號)計算題專項練習與答案匯編
- (2025年標準)配建協(xié)議書
- 房產(chǎn)委托簽署合同范本下載
- 房屋買賣合同條款細則解析
- 壓延機故障應急處理方案
- 機電一體化專業(yè)畢業(yè)職業(yè)規(guī)劃書
- 環(huán)境保護意識培養(yǎng):初中環(huán)境教育課程
- Big Data在零售業(yè)的應用研究報告
- 基于大數(shù)據(jù)的農業(yè)種植管理優(yōu)化方案
- 英語語法中的時態(tài)之謎:時態(tài)結構與應用教學教案
- 空地一體5G增強低空網(wǎng)絡白皮書2024
- 2024年山東省高考生物試卷(真題+答案)
- 沼液運輸合同
- 2024年楚雄州金江能源集團有限公司招聘筆試沖刺題(帶答案解析)
- 2023年河南省對口升學養(yǎng)殖類專業(yè)課試卷
- TSG-T7001-2023電梯監(jiān)督檢驗和定期檢驗規(guī)則宣貫解讀
- 腦梗塞后遺癥臨床路徑
- 中醫(yī)培訓課件:《中藥熱奄包技術》
- 勞動教育智慧樹知到期末考試答案2024年
- 房屋裝修合同范本下載
- 2023學年一年級語文下冊看拼音寫詞語字帖(全冊 部編版)
評論
0/150
提交評論