




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市西城區(qū)育才學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,E是正方形ABCD的邊DC上一點(diǎn),過(guò)點(diǎn)A作FA=AE交CB的延長(zhǎng)線于點(diǎn)F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無(wú)法計(jì)算2、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL3、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm4、如圖,圖形中的的值是()A.50 B.60 C.70 D.805、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,136、如圖,△ABC中,D,E分別為BC,AD的中點(diǎn),若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.87、一個(gè)三角形的兩邊長(zhǎng)分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.118、如圖,在中,,,AD平分交BC于點(diǎn)D,在AB上截取,則的度數(shù)為()A.30° B.20° C.10° D.15°9、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點(diǎn)作位置不同的格點(diǎn)的三角形與△ABC全等,這樣格點(diǎn)三角形最多可以畫(huà)出()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)10、如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個(gè)數(shù)是()A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D,己知DE=4,AD=6,則BE的長(zhǎng)為_(kāi)__.2、一個(gè)等腰三角形的一邊長(zhǎng)為2,另一邊長(zhǎng)為9,則它的周長(zhǎng)是________________.3、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點(diǎn),連結(jié)BE、CD交于點(diǎn)F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.4、如圖,已知AB=3,AC=CD=1,∠D=∠BAC=90°,則△ACE的面積是_____.5、如圖,△ABC中,∠B=20°,D是BC延長(zhǎng)線上一點(diǎn),且∠ACD=60°,則∠A的度數(shù)是____________度.6、如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,設(shè)∠A=.則∠A1=_______(用含的式子表示).7、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長(zhǎng)是12cm,則BC的長(zhǎng)是____cm.8、如圖,點(diǎn)E,F(xiàn)分別為線段BC,DB上的動(dòng)點(diǎn),BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.9、如圖,,,、分別為線段和射線上的一點(diǎn),若點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),二者速度之比為,運(yùn)動(dòng)到某時(shí)刻同時(shí)停止,在射線上取一點(diǎn),使與全等,則的長(zhǎng)為_(kāi)_______.10、如圖,∠C=∠D=90°,AC=AD,請(qǐng)寫(xiě)出一個(gè)正確的結(jié)論________.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖1,在長(zhǎng)方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當(dāng)點(diǎn)P從點(diǎn)B開(kāi)始運(yùn)動(dòng)時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣的v值,使得以A﹑B﹑P為頂點(diǎn)的三角形與以P﹑Q﹑C為頂點(diǎn)的三角形全等?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.2、如圖,已知點(diǎn)A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請(qǐng)問(wèn)線段AB與CD相等嗎?說(shuō)明理由.3、下面是“作一個(gè)角的平分線”的尺規(guī)作圖過(guò)程.已知:如圖,鈍角.求作:射線OC,使.作法:如圖,①在射線OA上任取一點(diǎn)D;②以點(diǎn)О為圓心,OD長(zhǎng)為半徑作弧,交OB于點(diǎn)E;③分別以點(diǎn)D,E為圓心,大于長(zhǎng)為半徑作弧,在內(nèi),兩弧相交于點(diǎn)C;④作射線OC.則OC為所求作的射線.完成下面的證明.證明:連接CD,CE由作圖步驟②可知______.由作圖步驟③可知______.∵,∴.∴(________)(填推理的依據(jù)).4、如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長(zhǎng)線上一點(diǎn),AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).5、如圖,點(diǎn)A,B,C,D在一條直線上,,,.求證:.6、如圖1,AE與BD相交于點(diǎn)C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過(guò)點(diǎn)C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→A方向以3cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿D→E方向以1cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).連接PQ,當(dāng)線段PQ經(jīng)過(guò)點(diǎn)C時(shí),直接寫(xiě)出t的值為.-參考答案-一、單選題1、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點(diǎn)睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.2、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點(diǎn)睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.3、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對(duì)各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點(diǎn)睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡(jiǎn)便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).4、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個(gè)外角的度數(shù)等于與其不相鄰的兩個(gè)內(nèi)角的度數(shù)和進(jìn)行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.5、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.6、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點(diǎn)睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個(gè)三角形的面積相等.7、B【分析】根據(jù)三角形的三邊關(guān)系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設(shè)第三邊為,可得,再解即可.【詳解】設(shè)第三邊為,由題意得:,.故選:B.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關(guān)鍵.8、B【分析】利用已知條件證明△ADE≌△ADC(SAS),得到∠DEA=∠C,根據(jù)外角的性質(zhì)可求的度數(shù).【詳解】解:∵AD是∠BAC的平分線,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B+,∴;故選:B【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,解決本題的關(guān)鍵是證明△ADE≌△ADC.9、C【分析】觀察圖形可知:DE與AC是對(duì)應(yīng)邊,B點(diǎn)的對(duì)應(yīng)點(diǎn)在DE上方兩個(gè),在DE下方兩個(gè)共有4個(gè)滿足要求的點(diǎn),也就有四個(gè)全等三角形.【詳解】根據(jù)題意,運(yùn)用“SSS”可得與△ABC全等的三角形有4個(gè),線段DE的上方有兩個(gè)點(diǎn),下方也有兩個(gè)點(diǎn),如圖.故選C.【點(diǎn)睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.10、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對(duì)折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點(diǎn)睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.二、填空題1、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點(diǎn)睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.2、20【分析】題目給出等腰三角形有兩條邊長(zhǎng)為2和9,而沒(méi)有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時(shí),2+2<9,所以不能構(gòu)成三角形;當(dāng)腰為9時(shí),2+9>9,所以能構(gòu)成三角形,周長(zhǎng)是:2+9+9=20.故答案為:20.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒(méi)有明確腰和底邊的題目一定要想到兩種情況,分類(lèi)進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.3、96°96度【分析】根據(jù)題意由翻折的性質(zhì)和全等三角形的對(duì)應(yīng)角相等、三角形外角定理以及三角形內(nèi)角和定理進(jìn)行分析解答.【詳解】解:設(shè)∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點(diǎn)睛】本題考查全等三角形的性質(zhì),解答本題的關(guān)鍵是利用“全等三角形的對(duì)應(yīng)角相等”和“兩直線平行,內(nèi)錯(cuò)角相等”進(jìn)行推理.4、##【分析】先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,然后利用三角形的面積公式即可得.【詳解】解:在和中,,,,則的面積是,故答案為:.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.5、40【分析】直接根據(jù)三角形外角的性質(zhì)可得結(jié)果.【詳解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴,故答案為:.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),熟知三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解本題的關(guān)鍵6、【分析】根據(jù)角平分線的定義、三角形的外角的性質(zhì)計(jì)算即可.【詳解】∵∠ABC與∠ACD的平分線交于A1點(diǎn),∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案為:.【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.7、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點(diǎn),可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點(diǎn),,,△ABD的周長(zhǎng)是12cm,,,故答案是:6.【點(diǎn)睛】本題考查了三角形的中線,解題的關(guān)鍵利用中線的性質(zhì)得出為的中點(diǎn).8、①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)【分析】按照①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);如圖,點(diǎn)即為所求.故答案為:①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn).【點(diǎn)睛】本題考查了作一個(gè)角等于已知角、兩點(diǎn)之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.9、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時(shí),列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因?yàn)椤螦=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時(shí),∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),利用分類(lèi)討論思想是解答此題的關(guān)鍵.10、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點(diǎn)睛】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)HL證明△ACB和△ADB全等解答.三、解答題1、(1)(10﹣2t);(2)當(dāng)v=1或v=2.4時(shí),△ABP和△PCQ全等.【分析】(1)根據(jù)題意求出BP,然后根據(jù)PC=BC-BP計(jì)算即可;(2)分△ABP≌△QCP和△ABP≌△PCQ兩種情況,根據(jù)全等三角形的性質(zhì)解答即可.【詳解】解:(1)∵點(diǎn)P的速度是2cm/s,∴ts后BP=2tcm,∴PC=BC?BP=(10?2t)cm,故答案為:(10﹣2t);(2)由題意得:,∠B=∠C=90°,∴只存在△ABP≌△QCP和△ABP≌△PCQ兩種情況,當(dāng)△ABP≌△PCQ時(shí),∴AB=PC,BP=CQ,∴10?2t=6,2t=vt,解得,t=2,v=2,當(dāng)△ABP≌△QCP時(shí),∴AB=QC,BP=CP,∴2t=10-2t,vt=6,解得,t=2.5,v=2.4,∴綜上所述,當(dāng)v=1或v=2.4時(shí),△ABP和△PCQ全等.【點(diǎn)睛】本題考查了全等三角形的性質(zhì),解題的關(guān)鍵在于能夠利用分類(lèi)討論的思想求解.2、AB=CD,理由見(jiàn)解析.【分析】由平行線的性質(zhì)得出∠A=∠C,證明△ABF≌△CDE(AAS),由全等三角形的性質(zhì)得出AB=CD.【詳解】解:AB=CD.理由如下:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴AB=CD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定理證明三角形全等.3、OE;CE;全等三角形的對(duì)應(yīng)角相等【分析】根據(jù)圓的半徑相等可得OD=OE,CD=CE,再利用SSS可證明,從而根據(jù)全等三角形的性質(zhì)可得結(jié)論.【詳解】證明:連接CD,CE由作圖步驟②可知___OE___.由作圖步驟③可知__CE___.∵,∴.∴(__全等三角形對(duì)應(yīng)角相等__)故答案為:OE;CE;全等三角形的對(duì)應(yīng)角相等【點(diǎn)睛】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過(guò)一點(diǎn)作已知直線的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 輸電線路接地電阻測(cè)量方案
- 建筑工程鋼筋綁扎施工方案
- 宿舍樓電氣系統(tǒng)負(fù)荷均衡管理方案
- 實(shí)驗(yàn)室檢查山東醫(yī)學(xué)高等專(zhuān)科學(xué)校血液學(xué)檢驗(yàn)52課件
- 輸電線路抗震設(shè)計(jì)技術(shù)方案
- 雞場(chǎng)節(jié)能減排技術(shù)
- 水電線路圖基礎(chǔ)知識(shí)培訓(xùn)課件
- 水電看圖基礎(chǔ)知識(shí)培訓(xùn)課件
- 水電暖安全知識(shí)培訓(xùn)課件
- 2025版?zhèn)鶆?wù)償還與子女撫養(yǎng)權(quán)離婚協(xié)議執(zhí)行標(biāo)準(zhǔn)
- 腫瘤的診斷與治療
- 【高朋律師事務(wù)所】RWA發(fā)展研究報(bào)告:法律、監(jiān)管和前瞻(2025年)
- DB42∕T 2272-2024 微?;瘞r瀝青改性瀝青路面施工技術(shù)規(guī)范
- 辦公耗材應(yīng)急方案(3篇)
- 新高中班級(jí)團(tuán)建活動(dòng)方案
- 護(hù)理執(zhí)行醫(yī)囑制度
- 渠道拓展培訓(xùn)
- 動(dòng)畫(huà)場(chǎng)景設(shè)計(jì)流程
- 2025年山東省濟(jì)南市中考英語(yǔ)模擬試題(含答案)
- 船舶拖帶協(xié)議書(shū)
- 兒童血壓測(cè)量課件
評(píng)論
0/150
提交評(píng)論