達(dá)標(biāo)測試京改版數(shù)學(xué)9年級上冊期中試題及答案詳解(歷年真題)_第1頁
達(dá)標(biāo)測試京改版數(shù)學(xué)9年級上冊期中試題及答案詳解(歷年真題)_第2頁
達(dá)標(biāo)測試京改版數(shù)學(xué)9年級上冊期中試題及答案詳解(歷年真題)_第3頁
達(dá)標(biāo)測試京改版數(shù)學(xué)9年級上冊期中試題及答案詳解(歷年真題)_第4頁
達(dá)標(biāo)測試京改版數(shù)學(xué)9年級上冊期中試題及答案詳解(歷年真題)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(1,1),且當(dāng)x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.2、如圖,點A(2,t)在第一象限,OA與x軸所夾銳角為,tan=2,則t的值為(

)A.4 B.3 C.2 D.13、如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(

)A. B. C. D.4、已知函數(shù)是反比例函數(shù),圖象在第一、三象限內(nèi),則的值是()A.3 B.-3 C. D.5、在同一直角坐標(biāo)系中,一次函數(shù)y=﹣kx+1與二次函數(shù)y=x2+k的大致圖象可以是()A. B. C. D.6、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達(dá)式為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、已知兩個直角三角形的三邊長分別為3,4,m和6,8,n,且這兩個直角三角形不相似,則m+n的值為(

).A.5+2B.15C.10+D.15+32、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED3、如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論中正確的是(

)A.S△ADB=S△ADC;B.當(dāng)0<x<3時,y1<y2;C.如圖,當(dāng)x=3時,EF=;D.當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減?。?、已知反比例函數(shù)y=﹣,則下列結(jié)論錯誤的是()A.點(1,2)在它的圖象上 B.其圖象分別位于第一、三象限C.y隨x的增大而增大 D.如果點P(m,n)在它的圖象上,則點Q(n,m)也在它的圖象上5、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE6、如圖,□ABCD中,E是AD延長線上一點,BE交AC于點F,交DC于點G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF7、如果α、β都是銳角,下面式子中不正確的是(

)A.sin(α+β)=sinα+sinβ B.cos(α+β)=時,α+β=60°C.若α≥β時,則cosα≥cosβ D.若cosα>sinβ,則α+β>90°第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若函數(shù)是反比例函數(shù),那么k的值是_____.2、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.3、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.4、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(biāo)(x,y)對應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________5、已知二次函數(shù)與x軸有兩個交點,把當(dāng)k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.6、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點,則不等式的解集是_____.7、如圖,在中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當(dāng)為直角三角形時,線段的長為________.四、解答題(6小題,每小題10分,共計60分)1、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當(dāng)點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設(shè)點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當(dāng)點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.2、如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.3、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當(dāng)點落在的邊上時,求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時,求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.4、如圖所示,AD、BC為兩路燈,身高相同的小明、小亮站在兩路燈桿之間,兩人相距6.5m,小明站在P處,小亮站在Q處,小明在路燈C下的影長為2m,已知小明身高1.8m,路燈BC高9m.①計算小亮在路燈D下的影長;②計算建筑物AD的高.5、如圖1,E是等邊ABC的邊BC上一點(不與點B,C重合),連接AE,以AE為邊向右作等邊AEF,連接CF.已知ECF的面積(S)與BE的長(x)之間的函數(shù)關(guān)系如圖2所示(P為拋物線的頂點)﹒(1)當(dāng)ECF的面積最大時,求∠FEC的度數(shù);(2)求等邊ABC的邊長.6、如圖,在平面直角坐標(biāo)系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點.(1)求一次函數(shù)的表達(dá)式;(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.當(dāng)時,直接寫出的取值范圍.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當(dāng)x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)點A的坐標(biāo),利用銳角三角函數(shù)定義求出t的值即可.【詳解】如圖,過點A作AB⊥x軸與點B,∵點A在第一象限,坐標(biāo)為(2,t),∴,在RT△AOB中,tan,則t=4,故選A.【考點】本題考查了三角函數(shù)的定義,熟練掌握定義即可求解.3、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關(guān)于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關(guān)于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.4、A【解析】【分析】根據(jù)反比例函數(shù)的定義建立關(guān)于m的一元二次方程,再根據(jù)反比例函數(shù)的性質(zhì)解答.【詳解】∵函數(shù)是反比例函數(shù),∴m2-10=-1,解得,m2=9,∴m=±3,當(dāng)m=3時,m-2>0,圖象位于一、三象限;當(dāng)m=-3時,m-2<0,圖象位于二、四象限;故選A.【考點】本題考查了反比例函數(shù)的定義和性質(zhì),對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).5、A【解析】【分析】二次函數(shù)圖象與y軸交點的位置可確定k的正負(fù),再利用一次函數(shù)圖象與系數(shù)的關(guān)系可找出一次函數(shù)y=-kx+1經(jīng)過的象限,對比后即可得出結(jié)論.【詳解】解:由y=x2+k可知拋物線的開口向上,故B不合題意;∵二次函數(shù)y=x2+k與y軸交于負(fù)半軸,則k<0,∴﹣k>0,∴一次函數(shù)y=﹣kx+1的圖象經(jīng)過經(jīng)過第一、二、三象限,A選項符合題意,C、D不符合題意;故選:A.【考點】本題考查了二次函數(shù)的圖象、一次函數(shù)圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)的圖象找出每個選項中k的正負(fù)是解題的關(guān)鍵.6、B【解析】【分析】先求出平移后拋物線的頂點坐標(biāo),進(jìn)而即可得到答案.【詳解】解:∵的頂點坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達(dá)式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.二、多選題1、AC【解析】【分析】根據(jù)相似三角形的性質(zhì)、分情況計算即可.【詳解】解:當(dāng)3,4為直角邊,6,8也為直角邊時,此時兩三角形相似;當(dāng)三邊分別為3,4,,和6,8,2,此時兩三角形相似;當(dāng)3,4為直角邊時,m=5;則8為另一三角形的斜邊,其直角邊為:n==2,故m+n=5+2;當(dāng)6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:m==,故m+n=10+;綜上所述:m+n的值為5+2或10+,故選:A、C.【考點】本題主要考查了勾股定理以及相似三角形的性質(zhì),在直角三角形中對未知邊是直角邊還是斜邊進(jìn)行不同情況的討論是解題的關(guān)鍵.2、ABD【解析】【分析】利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對A、C進(jìn)行判斷;根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對B、C進(jìn)行判斷.【詳解】解:∵∠EAD=∠BAC,當(dāng),∠A=∠A,∴△ABC∽△ADE,故選項A符合題意;當(dāng)∠B=∠ADE時,△ABC∽△ADE,故選項B符合題意;C選項中角A不是成比例的兩邊的夾角,故選項C不符合題意;當(dāng)∠C=∠AED時,△ABC∽△ADE,故選項D符合題意;故選:ABD.【考點】本題考查了相似三角形的判定:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.3、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標(biāo),利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應(yīng)邊相等得到,確定出C坐標(biāo),代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標(biāo)代入反比例解析式得:,即,由函數(shù)圖象得:當(dāng)時,,選項B錯誤;當(dāng)時,,,即,選項C正確;當(dāng)時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標(biāo)系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標(biāo)與圖形性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握函數(shù)的性質(zhì)是解本題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)的性質(zhì)解答.【詳解】A、將x=1代入y=-得到y(tǒng)=-2≠2,∴點(1,2)不在反比例函數(shù)y=-2x的圖象上,故本選項錯誤;B、因為比例系數(shù)為-2,則函數(shù)圖象過二、四象限,故本選項錯誤;C、在每一象限內(nèi)y隨x的增大而增大,故本選項錯誤.D、如果點P(m,n)在它的圖象上,則點Q(n,m)也在它的圖象上,故本選項正確;故選:ABC.【考點】本題考查了反比例函數(shù)的性質(zhì),熟悉反比例函數(shù)的圖象是解題的關(guān)鍵.5、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關(guān)鍵.6、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對邊平行的特殊條件來進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項C正確;無法證得△ACD∽△GCF,故選:ABC.【考點】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.7、ACD【解析】【分析】可以選擇特殊值代入,進(jìn)行分析.【詳解】解:A中,如α=30°,β=60°時,而sin(α+β)=sin90°=1,sin30°+sin60°=,顯然錯誤,符合題意;B中,根據(jù)cos60°=,正確,不符合題意;C中,如α=60°,β=30°時,而cos60°=,cos30°=,顯然錯誤,符合題意;D中,如cos30°>sin45°,錯誤,符合題意.故選:ACD.【考點】本題考查了特殊角的三角函數(shù)值,記憶特殊角的三角函數(shù)值是解題的關(guān)鍵.三、填空題1、0【解析】【分析】直接利用反比例函數(shù)的定義得出答案.【詳解】∵函數(shù)是反比例函數(shù),∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合題意舍去)∴k=0.故答案為:0.【考點】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義,是解題的關(guān)鍵.2、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.3、【解析】【分析】直接根據(jù)“上加下減,左加右減”進(jìn)行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關(guān)鍵.4、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當(dāng)x取-3和-1時,y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.5、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進(jìn)而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標(biāo),畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當(dāng)k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)

:①因為為的,所以它的圖象從左到右是上升的,當(dāng)它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關(guān)鍵.6、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對稱,由此可知拋物線與直線交于,兩點,再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點,∴,,∴拋物線與直線交于,兩點,觀察函數(shù)圖象可知:當(dāng)或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.7、或【解析】【分析】(1)分別在、、中應(yīng)用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當(dāng)時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設(shè),則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當(dāng)時,連接、交于點,過點作于,如圖2:設(shè),則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學(xué)思想.四、解答題1、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關(guān)線段求得兩個變量之間的函數(shù)關(guān)系即可.(2)分兩種情形:①如圖中,由題意點在上運動的時間與點在上運動的時間相等,即.當(dāng)時,當(dāng)時,當(dāng)時,分別構(gòu)建方程求解即可.②如圖中,作于.首先證明,根據(jù)構(gòu)建方程即可解決問題.【詳解】解:(1)如圖中,當(dāng)時,點與點都在上運動,,,,,,,,,,.此時兩平行線截平行四邊形的面積為.如圖中,當(dāng)時,點在上運動,點仍在上運動.則,,,,,,,而,故此時兩平行線截平行四邊形的面積為:,如圖中,當(dāng)時,點和點都在上運動.則,,,.此時兩平行線截平行四邊形的面積為.故關(guān)于的函數(shù)關(guān)系式為,當(dāng)時,S隨t增大而增大,當(dāng)時,S隨t增大而增大,當(dāng)時,S隨t增大而減小,∴當(dāng)t=8時,S最大,代入可得S=;(2)如圖中,由題意點在上運動的時間與點在上運動的時間相等,.當(dāng)時,,則有,解得,當(dāng)時,則有,解得,當(dāng)時,,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當(dāng)時,則有,解得,綜上所述,滿足條件的m的值為或或或.【考點】本題屬于四邊形綜合題,考查了平行四邊形的性質(zhì),多邊形的面積,等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.2、旗桿的高度為11.5m【解析】【分析】根據(jù)相似三角形的性質(zhì)列式計算即可;【詳解】解:由題意可得:△DEF∽△DCA,則,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m).答:旗桿的高度為11.5m.【考點】本題主要考查了相似三角形的性質(zhì)應(yīng)用,準(zhǔn)確分析計算是解題的關(guān)鍵.3、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點的運動速度和BD的長度即可出結(jié)果;(2)畫出圖象,根據(jù)三角形的相似求出各個線段長,即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過三角函數(shù)計算出各邊長求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無縫隙的圖形恰好是三角形,則需要被分割的是兩個至少有一條相等邊長的直角三角形,或者直線正好過正方形一條邊的中點,分情況畫圖求解即可.【詳解】解:(1)∵,為的中點,∴,P從B運動到點D所需時間為1s,由題意可知,;(2)如圖所示,由題意得,∴,∵,,,∴,∴,由四邊形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)當(dāng)時,如圖,DM交BC于點F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此時,∴,∴,解得,,同理,,解得,,,當(dāng)時,如圖,DM交BC于點F,QM交BC于E,,由題意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,綜上所述:;(4)如圖所示,當(dāng)Q與C重合時,滿足條件,由前面解題過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論