福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克試題(含詳細解析)_第1頁
福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克試題(含詳細解析)_第2頁
福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克試題(含詳細解析)_第3頁
福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克試題(含詳細解析)_第4頁
福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克試題(含詳細解析)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建泉州市永春第一中學7年級數學下冊第五章生活中的軸對稱專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下面四個圖形中,是軸對稱圖形的是()A. B. C. D.2、下列垃圾分類的標識中,是軸對稱圖形的是()A.①② B.③④ C.①③ D.②④3、如圖所示,在中,平分交于點D,,,則的度數是()A. B. C. D.4、如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B'處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A'處,得折痕EN.則∠NEM的度數為()A.105o B.C. D.不能確定5、下列圖案中,有且只有三條對稱軸的是()A. B. C. D.6、下列有關綠色、環(huán)保主題的四個標志中,是軸對稱圖形是()A. B. C. D.7、如圖,將正方形圖案翻折一次,可以得到的圖案是()A. B. C. D.8、下列圖形中,不是軸對稱圖形的是()A. B. C. D.9、下面4個圖形中,不是軸對稱圖形的是()A. B. C. D.10、如圖所示,把一個正方形三次對折后沿虛線剪下,則所得圖形是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,點P為∠AOB內一點,分別作出P點關于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=18,則△PMN的周長為______.2、如圖,△ABC中,點D在邊BC上,將點D分別以AB、AC為對稱軸,畫出對稱點E、F,連接AE、AF.根據圖中標示的角度,可知∠EAF=___°.3、如圖,將長方形沿折疊,點落在邊上的點處,點落在點處,若,則等于_______(用含的式子表示).4、在風箏節(jié)活動中,小華用木棒制作了一個風箏,這個風箏可以看作將沿直線翻折,得到(如圖所示).若,,,則制作這個風箏大約需要木棒的長度為______cm.5、如圖,在△ABC中,點D,E分別在邊AB,BC上,點A與點E關于直線CD對稱.若AB=8cm,AC=10cm,BC=14cm,則△DBE的周長為___.6、如圖,正三角形網格中,已有兩個小正三角形被涂黑,再將圖中其余小正三角形涂黑一個,使整個被涂黑的圖案構成一個軸對稱圖形的方法有_________種.7、如圖,把一張長方形的紙條按如圖那樣折疊后,若量得∠DBA=40°,則∠ABC的度數為_____度.8、在線段?角?圓?長方形?梯形?三角形?等邊三角形中,是軸對稱圖形的有__________個.9、如圖,△ABC中,AB=8cm,BC=5cm,AC=6cm,沿過點B的直線折疊三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED的周長長度為__________.10、如圖,在2×2的方格紙中有一個以格點為頂點的ABC,則與ABC成軸對稱且以格點為頂點三角形共有____個.三、解答題(6小題,每小題10分,共計60分)1、如圖,小強拿一張正方形的紙片(圖①),將其沿虛線對折一次得圖②,再沿圖②中的虛線對折得圖③,然后用剪刀沿圖③中的虛線剪去一個角再打開,請你畫出打開后的幾何圖形.2、如圖,正方形網格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,點A,B都在格點上,按下列要求作圖,使得所畫圖形的頂點均在格點上.(1)在圖1中畫一個以線段為邊的軸對稱,使其面積為2;(2)在圖2中畫一個以線段為邊的軸對稱四邊形,使其面積為6.3、如圖,在正方形網格中,點A、B、C、M、N都在格點上.(1)作△ABC關于直線MN對稱的圖形△A'B'C';(2)作出AB邊上的中線;(3)若每個小正方形邊長均為1,則△ABC的面積=______.4、ABCD是長方形紙片的四個頂點,點E、F、H分別邊AD、BC、AD上的三點,連接EF、FH.(1)將長方形紙片的ABCD按如圖①所示的方式折疊,FE、FH為折痕,點B、C、D折疊后的對應點分別為B′、C′、D′,點B′在FC′上,則∠EFH的度數為;(2)將長方形紙片的ABCD按如圖②所示的方式折疊,FE、FH為折痕,點B、C、D折疊后的對應點分別為B′、C′、D'(B′、C′的位置如圖所示),若∠B'FC′=16°,求∠EFH的度數;(3)將長方形紙片的ABCD按如圖③所示的方式折疊,FE、FH為折痕,點B、C、D折疊后的對應點分別為B′、C′,D′(B′、C′的位置如圖所示).若∠EFH=n°,則∠B′FC′的度數為.5、已知在紙面上畫有一數軸,如圖所示.(1)折疊紙面,使表示1的點與表示-1的點重合,則表示-3的點與表示的點重合;(直接寫出答案)(2)折疊紙面,使表示-1的點與表示3的點重合,則表示100的點與表示數的點重合;(直接寫出答案)(3)已知在數軸上點A表示的數是a,將點A移動10個單位得到點B,此時點B表示的數和a是互為相反數,求a的值.6、如圖,從圖形Ⅰ到圖形Ⅱ是進行了平移還是軸對稱?如果是軸對稱,找出對稱軸;如果是平移,是怎樣的平移?-參考答案-一、單選題1、D【分析】根據軸對稱圖形的定義判斷即可.【詳解】∵不是軸對稱圖形,∴A不符合題意;∵不是軸對稱圖形,∴B不符合題意;∵不是軸對稱圖形,∴C不符合題意;∵是軸對稱圖形,∴D符合題意;故選D.【點睛】本題考查了軸對稱圖形即沿直線折疊,直線兩旁的部分能夠完全重合的圖形,熟記定義是解題的關鍵.2、B【詳解】解:圖③和④是軸對稱圖形,故選:B.【點睛】本題考查了軸對稱圖形,熟記軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.3、D【分析】根據三角形外角的性質可求得∠BAD的度數,由角平分線的性質可求得∠BAC的度數.【詳解】∵∠ADC是△ABD的一個外角∴∠ADC=∠B+∠BAD∴∠BAD=∠ADC-∠B=70゜-30゜=40゜∵平分∴∠BAC=2∠BAD=2×40゜=80゜故選:D【點睛】本題考查了三角形外角的性質及角平分線的性質,掌握這兩個性質是關鍵.4、B【分析】由折疊的性質可得:再結合鄰補角的含義可得答案.【詳解】解:由折疊的性質可得:故選B【點睛】本題考查的是軸對稱的性質,角平分線的含義,鄰補角的含義,利用軸對稱的性質證明是解本題的關鍵.5、D【詳解】解:A、不是軸對稱圖形,故不符合題意;B、有四條對稱軸,故不符合題意;C、不是軸對稱圖形,故不符合題意;D、有三條對稱軸,故符合題意.故選:D.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.6、B【分析】結合軸對稱圖形的概念進行求解.【詳解】解:A、不是軸對稱圖形,本選項不符合題意;B、是軸對稱圖形,本選項符合題意;C、不是軸對稱圖形,本選項不符合題意;D、不是軸對稱圖形,本選項不符合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、B【分析】根據軸對稱的性質進行解答判斷即可.【詳解】解:利用軸對稱可得將正方形圖案翻折一次,可以得到的圖案是,故選:B.【點睛】本題考查了軸對稱的性質,熟練掌握軸對稱的定義與性質是解本題的關鍵.8、A【分析】把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據定義逐一判斷即可得到答案.【詳解】解:選項A中的圖形不是軸對稱圖形,故A符合題意;選項B中的圖形是軸對稱圖形,故B不符合題意;選項C中的圖形是軸對稱圖形,故C不符合題意;選項D中的圖形是軸對稱圖形,故D不符合題意;故選A【點睛】本題考查的是軸對稱圖形的識別,掌握“軸對稱圖形的定義”是解本題的關鍵.9、D【分析】根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、矩形是軸對稱圖形,故本選項不符合題意;B、菱形是軸對稱圖形,故本選項不符合題意;C、正方形是軸對稱圖形,故本選項不符合題意;D、平行四邊形不是軸對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、A【分析】根據剪下的圖形為等腰直角三角形,展開后為正方形,可知剪去的仍為正方形,由此即知答案.【詳解】由題意知,剪下的圖形為等腰直角三角形,展開后為正方形,所以剪去的為正方形,原圖為正方形,其還原的過程如下:故選:A【點睛】本題考查了圖形的折疊及裁剪,關鍵是根據折疊后裁剪的過程還原,對學生的想象能力有更高的要求.二、填空題1、18【分析】因為P,P1關于OA對稱,P,P2關于OB對稱,推出PN=NP2,MP=MP1,推出△PMN的周長=PN+MN+PM=NP2+MN+NP1=P1P2即可解決問題.【詳解】解:∵P,P1關于OA對稱,P,P2關于OB對稱,∴PN=NP2,MP=MP1,∴△PMN的周長=PN+MN+PM=NP2+MN+MP1=P1P2=18,∴△PMN的周長為18.故答案為:18.【點睛】本題考查了軸對稱的性質,三角形的周長等知識,解題的關鍵是熟練掌握軸對稱的性質,學會用轉化的思想思考問題,屬于中考??碱}型.2、106【分析】連接AD,根據軸對稱的性質求出,,再根據三角形的內角和定理求出,最后應用等價代換思想即可求解.【詳解】解:如下圖所示,連接AD.∵點E和點F是點D分別以AB、AC為對稱軸畫出的對稱點,∴,.∵,,∴.∴.故答案為:106.【點睛】本題考查軸對稱的性質,熟練掌握該知識點是解題關鍵.3、【分析】根據折疊得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度數,根據平行線的性質得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,進而求出∠BFG.【詳解】解:∵將長方形ABCD沿EF折疊,點D落在AB邊上的H點處,點C落在點G處,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四邊形ABCD是長方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案為:m.【點睛】本題考查了平行線的性質,折疊的性質等知識點,根據平行線的性質求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此題的關鍵.4、310【分析】依據折疊即可得到△ACD≌△ABD,進而得出AB=AC=40cm,CD=BD=70cm,即可得出制作這個風箏大約需要木棒的長度.【詳解】解:∵△ACD沿直線AD翻折得到△ABD,∴△ACD≌△ABD,∴AB=AC=40cm,CD=BD=70cm,∴制作這個風箏大約需要木棒的長度為2(40+70)+90=310(cm).故答案為:310.【點睛】本題主要考查了翻折變換,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.5、【分析】根據對稱的性質可得,,進而可得的長,根據三角形的周長公式計算即可求得△DBE的周長【詳解】解:∵點A與點E關于直線CD對稱,∴,BC=14△DBE的周長為故答案為:【點睛】本題考查了軸對稱的性質,理解對稱的性質是解題的關鍵.6、3【分析】根據軸對稱圖形的定義:如果一個圖形沿一條直線對折,直線兩旁的部分能互相重合,那么這個圖形叫做軸對稱圖形,做答即可.【詳解】解:如圖所示,根據軸對稱圖形的定義可知,選擇一個小正三角形涂黑,使整個被涂黑的圖案構成一個軸對稱圖形,選擇的位置可以有以下3種可能:故答案為:3.【點睛】本題考查軸對稱圖形,解題的關鍵是熟知軸對稱的概念.7、70【分析】由∠DBA的度數可知∠ABE度數,再根據折疊的性質可得∠ABC=∠EBC=∠ABE即可.【詳解】解:延長DB到點E,如圖:∵∠DBA=40°,∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,又∵把一張長方形的紙條按如圖那樣折疊,∴∠ABC=∠EBC=∠ABE=70°,故答案為:70.【點睛】本題主要考查了折疊的性質和鄰補角的定義,屬于基礎題目,得到∠ABC=∠ABE是解題的關鍵.8、5【分析】根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據此作答.【詳解】解:線段的垂直平分線所在的直線是對稱軸,是軸對稱圖形,符合題意;角的平分線所在直線就是對稱軸,是軸對稱圖形,符合題意;圓有無數條對稱軸,是軸對稱圖形,符合題意;長方形有二條對稱軸,是軸對稱圖形,符合題意;梯形不一定是軸對稱圖形,不符合題意;三角形不一定是軸對稱圖形,不符合題意;等邊三角形三條中線所在的直線是對稱軸,是軸對稱圖形,符合題意;故軸對稱圖形共有5個.故答案為:5.【點睛】本題考查了軸對稱的概念.軸對稱的關鍵是尋找對稱軸,圖象沿某一直線折疊后可以重合.9、9cm【分析】根據翻折的性質可知CD=DE,BC=BE,于是可以得到AD+DE的長和AE的長,從而可以得到△ADE的周長.【詳解】解:由題意可得,BC=BE,CD=DE,∵AB=8cm,BC=5cm,AC=6cm,∴AD+DE=AD+CD=AC=6cm,AE=AB-BE=AB-BC=8-5=3cm,∴AD+DE+AE=9cm,即△AED的周長為9cm,故選:C.【點睛】本題考查翻折變換和三角形的周長,解答本題的關鍵是利用等量代換的思想,求三角形的周長.10、5【分析】解答此題首先找到△ABC的對稱軸,EH、GC、AD,BF等都可以是它的對稱軸,然后依據對稱找出相應的三角形即可.【詳解】解:與△ABC成軸對稱且以格點為頂點三角形有△ABG,△CDF,△AEF,△DBH,△BCG共5個,故答案為5.【點睛】本題主要考查軸對稱的性質;找著對稱軸后畫圖是正確解答本題的關鍵.三、解答題1、見解析.【分析】利用圖形的翻折,由翻折前后的圖形是全等形,通過動手操作得出答案.【詳解】解:如圖所示:【點睛】本題考查剪紙問題,對于此類問題,只要親自動手操作,答案就會很直觀地呈現出來,本題培養(yǎng)了學生的動手能力和空間想象能力.2、(1)作圖見詳解;(2)作圖見詳解.【分析】(1)根據軸對稱圖形的性質及面積作圖即可;(2)根據題意,作出相應軸對稱圖形,驗證面積即可得.【詳解】解:(1)根據題意:為軸對稱圖形,面積為2,由圖可得:,即為所求,(答案不唯一);(2)四邊形ABDE為軸對稱圖形,面積為:,四邊形ABDE即為所求(答案不唯一).【點睛】題目主要考查軸對稱圖形的作法,理解題意,熟練運用軸對稱的性質是解題關鍵.3、(1)見解析;(2)見解析;(3)3.【分析】(1)分別作點A,B,C關于直線MN對稱的點A′,B′,C′,連接A′B′,B′C′,A′C′,即可畫出△A′B′C′;(2)取格點EF,連接EF交AB于點D,連接CD即為所求;(3)觀察圖形,找出△ABC的底和高,利用三角形的面積公式即可求出結論.【詳解】(1)如圖,△A'B'C'即為所求;(2)如圖,CD即為所求;(3)△ABC的面積為:×3×2=3.【點睛】本題主要考查了利用軸對稱變換作圖,以及全等三角形的判定和性質,解決本題的關鍵是掌握軸對稱的性質準確作出對應點.4、(1)90°;(2)98°;(3)180°﹣2n°【分析】(1)由折疊可得∠BFE=∠B′FE,∠CFH=∠C′FH,進而得出∠EFH=(∠B′FB+∠C′FC),即可得出結果;(2)可設∠BFE=∠B′FE=x,∠CFH=∠C′FH=y(tǒng),根據2x+16°+2y=180°,得出x+y=82°,進而得到∠EFH;(3)可設∠BFE=∠B′FE=x,∠CFH=∠C′FH=y(tǒng),即可得到x+y=180°﹣n°,再根據∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y﹣∠B′FC′,即可得到∠B′FC′.【詳解】解:(1)∵沿EF、FH折疊,∴∠BFE=∠B′FE,∠CFH=∠C′FH,∵點B′在C′F上,∴∠EFH=∠B′FE+∠C′FH=(∠B′FB+∠C′FC)=×180°=90°,故答案為:90°;(2)∵沿EF、FH折疊,∴可設∠BFE=∠B′FE=x,∠CFH=∠C′FH=y(tǒng),∵∠B'FC′=16°,∴2x+16°+2y=180°,∴x+y=82°,∴∠EFH=x+16°+y=16°+82°=98°;(3)∵沿EF、FH折疊,∴可設∠BFE=∠B′FE=x,∠CFH=∠C′FH=y(tǒng),∴∠EFH=180°﹣(∠BFE+∠CFH)=180°﹣(x+y),∵∠EFH=n°,∴x+y=180°﹣n°,∵∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論