綜合解析湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習練習題(含答案詳解)_第1頁
綜合解析湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習練習題(含答案詳解)_第2頁
綜合解析湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習練習題(含答案詳解)_第3頁
綜合解析湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習練習題(含答案詳解)_第4頁
綜合解析湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習練習題(含答案詳解)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省赤壁市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,,的角平分線交于點,若,,則的度數(shù)(

)A. B. C. D.2、如圖7,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F.下列結論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正確的有()A.1個 B.2個 C.3個 D.4個3、下列命題正確的是

()A.三角形的外角大于它的內角B.三角形的一個外角等于它的兩個內角C.三角形的一個內角小于與它不相鄰的外角D.三角形的外角和是180°4、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(

)A.15° B.20° C.25° D.30°5、如圖,在三角形ABC中,,,D是BC上一點,將三角形ABD沿AD翻折后得到三角形AED,邊AE交射線BC于點F,若,則(

)A.120° B.135° C.110° D.150°6、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(

)A. B. C. D.7、將一副三角板按如圖所示的方式放置,,,,且點在上,點在上,AC∥EF,則的度數(shù)為(

)A. B. C. D.8、如圖,若,,則:①;②;③平分;④;⑤,其中正確的結論是A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,將沿翻折,頂點均落在O處,且與重合于線段,測得,則________度.2、如圖,給出下列條件:①;②;③;④;⑤.其中,一定能判定∥的條件有_____________(填寫所有正確的序號).3、如圖,將一副三角尺按圖中所示位置擺放,點F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,則∠AFD的大小為___________度.4、一副三角尺如圖擺放,是延長線上一點,是上一點,,,,若∥,則等于_________度.5、如圖,把一張直角△ABC紙片沿DE折疊,已知∠1=68°,則∠2的度數(shù)為_______.6、將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.7、如圖,點E是AD延長線上一點,如果添加一個條件,使BC∥AD,則可添加的條件為__________.(任意添加一個符合題意的條件即可)三、解答題(7小題,每小題10分,共計70分)1、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).2、如圖,BD⊥AC于點D,EF⊥AC于點F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度數(shù);(2)求證:DM∥BC.3、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請把證法1補充完整,并用不同的方法完成證法2.4、如圖,已知于點,于點,,試說明.解:因為(已知),所以().同理.所以().即.因為(已知),所以().所以().5、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).6、如圖(1)所示的圖形,像我們常見的學習用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;(2)請你直接利用以上結論,解決以下三個問題:①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);(寫出解答過程)③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數(shù)=__________°.7、(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關系?并說明理由.-參考答案-一、單選題1、A【解析】【分析】法一:延長PC交BD于E,設AC、PB交于F,根據(jù)三角形的內角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內角和定理,三角形的外角性質,對頂角的性質,角平分線的性質等知識點的理解和掌握,能熟練地運用這些性質進行計算是解此題的關鍵.2、C【解析】【分析】先根據(jù)AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點F,由三角形內角和定理以及平行線的性質即可得出結論.【詳解】解:標注角度如圖所示:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正確;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②錯誤;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正確;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分線交于點F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.故選:C.【考點】本題主要考查了平行線的性質與判定、三角形內角和定理、直角三角形的性質及角平分線的計算,解題的關鍵是熟知三角形的內角和等于180°.3、C【解析】【詳解】【分析】根據(jù)三角形的外角性質:①三角形的外角和為360°;②三角形的一個外角等于和它不相鄰的兩個內角的和;③三角形的一個外角大于和它不相鄰的任何一個內角,分別進行分析即可.【詳解】A、三角形的外角大于與它不相鄰的內角,故A選項錯誤;B、三角形的一個外角等于與它不相鄰的兩個內角之和,故B選項錯誤;C、三角形的一個內角小于和它不相鄰的任何一個外角,故C選項正確;D、三角形的外角和是360°,故D選項錯誤,故選C.【考點】本題主要考查了三角形的外角的性質,關鍵是熟練掌握性質定理.4、B【解析】【分析】利用三角形外角的性質,得到∠ACD與∠ABD的關系,然后用角平分線的性質得到角相等的關系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質、三角形外角的性質、三角形內角和等知識點.解題的關鍵是熟練的運用所學性質去求解.5、A【解析】【分析】由得到∠FDE=∠C=60°,由折疊的性質知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性質得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,進一步求得∠ADC=60°,進一步求得∠BDA.【詳解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故選:A【考點】此題考查了折疊的性質,平行線性質,外角的性質等知識,熟練掌握折疊的性質是解題的關鍵.6、C【解析】【分析】根據(jù)直角三角形的性質可得∠BAC=45°,根據(jù)鄰補角互補可得∠EAF=135°,然后再利用三角形的外角的性質可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點】此題主要考查了三角形的內角和,三角形的外角的性質,關鍵是掌握三角形的一個外角等于和它不相鄰的兩個內角的和.7、C【解析】【分析】根據(jù)平行線的性質和三角形的內角和定理即可得到結論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點】本題考查了三角形的內角和定理,平行線的性質,正確的識別圖形是解題的關鍵.8、C【解析】【分析】由平行線的性質得出內錯角相等、同位角相等,得出②正確;再由已知條件證出,得出,①正確;由平行線的性質得出⑤正確;即可得出結果.【詳解】解:,,,故②正確;,,,故①正確;,故⑤正確;而不一定平分,不一定等于,故③,④錯誤;故選:C.【考點】本題考查了平行線的判定與性質,解題的關鍵是熟練掌握平行線的判定與性質,并能進行推理論證.二、填空題1、96【解析】【分析】延長FO交AC于點G.根據(jù)三角形內角和定理可求出.由翻折的性質可知,即得出,從而可求出.由三角形外角性質結合三角形內角和定理即可得出,從而可求出.【詳解】解:如圖,延長FO交AC于點G.∵,∴.由翻折可知,∴,即,∴.∵,,∴,即,∴.故答案為:96.【考點】本題考查三角形內角和定理,三角形外角性質,翻折的性質.正確的作出輔助線是解題關鍵.2、①③④【解析】【分析】根據(jù)平行線的判定方法對各小題判斷即可解答.【詳解】①∵,∴∥(同旁內角互補,兩直線平行),正確;②∵,∴∥,錯誤;③∵,∴∥(內錯角相等,兩直線平行),正確;④∵,∴∥(同位角相等,兩直線平行),正確;⑤不能證明∥,錯誤,故答案為:①③④.【考點】本題考查了平行線的判定,熟練掌握平行線的判定方法是解答的關鍵.3、15【解析】【分析】根據(jù)直角三角板的特點,結合題意,通過角的轉換即可得結果;【詳解】解:如圖,∵∠ACB=∠EFD=90°,∠ABC=60°,∴∠A=30°,∵∠DEF=45°,AB∥DE,∴∠BGF=45°,∵∠A+∠AFD=∠BGF=45°,∴∠AFD=∠BGF-∠A=45°-30°=15°.故答案為:15.【考點】本題主要考查角的轉換、三角形的內角和定理、平行線的性質,掌握三角形的內角和定理、平行線的性質是解題的關鍵.4、15【解析】【分析】根據(jù)三角形內角和定理得出∠ACB=60°,∠DEF=45°,再根據(jù)兩直線平行內錯角相等得到∠CEF=∠ACB=60°,根據(jù)角的和差求解即可.【詳解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案為:15.【考點】本題考查三角形內角和定理及平行線的性質,熟練掌握平行線的性質是解題的關鍵.5、46°【解析】【分析】由題意得∠C′=90°,由折疊得∠CDE=∠C′DE,那么∠CDE=180°﹣∠1=112°,故∠C′DE=∠C′DA+∠1=112°,進而推斷出∠C′DA=112°﹣68°=44°,從而求得∠2.【詳解】解:由題意得:∠C′=90°,由折疊得∠CDE=∠C′DE.∵∠1=68°,∴∠CDE=180°﹣∠1=112°.∴∠C′DE=∠C′DA+∠1=112°.∴∠C′DA=112°﹣68°=44°.∴∠2=180°﹣∠C′﹣∠C′DA=46°.故答案為:46°.【考點】本題考查了三角形折疊問題和三角形內角和,解題關鍵是根據(jù)折疊得出角相等,利用三角形內角和求解.6、40°【解析】【分析】直接利用三角形內角和定理得出∠6+∠7的度數(shù),進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案為40°.【考點】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.7、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行,據(jù)此進行判斷(答案不唯一).【詳解】解:若,則BC∥AD;若∠C+∠ADC=180°,則BC∥AD;若∠CBD=∠ADB,則BC∥AD;若∠C=∠CDE,則BC∥AD;故答案為∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考點】本題主要考查了平行線的判定,同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行.三、解答題1、(1)40°;(2)130°【解析】【分析】(1)依據(jù)三角形內角和定理,即可得到∠BAC的度數(shù),再根據(jù)角平分線的定義,即可得到∠CAF的度數(shù);(2)依據(jù)三角形內角和定理,即可得到∠ACF的度數(shù),再根據(jù)三角形內角和定理,即可得出∠AFC的度數(shù).【詳解】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣30°﹣70°=80°,又∵AE平分∠BAC,∴∠CAF=∠CAB=×80°=40°;(2)∵CD為△ABC的高,∠CAD=80°,∴Rt△ACD中,∠ACF=90°﹣80°=10°,∴∠AFC=180°﹣∠ACF﹣∠CAF=180°﹣10°﹣40°=130°.【考點】本題考查了三角形的外角性質、三角形的角平分線、中線和高、三角形內角和定理,熟練掌握性質,靈活運用定理是解題的關鍵.2、(1)125°;(2)證明見解析【解析】【分析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質得到∠EFG=∠1=35°,再根據(jù)角的和差關系可求∠GFC的度數(shù);(2)根據(jù)平行線的性質得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GF∥BC,證得MD∥GF,根據(jù)平行線的性質即可得到結論.【詳解】解:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC.∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.【考點】本題考查了平行線的判定和性質,熟練掌握平行線的判定和性質是解題的關鍵.3、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內角和定理和角的和差關系即可得到結論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內角和定理即可得到結論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.4、垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【解析】【分析】根據(jù)垂直定義得出,求出,根據(jù)平行線的判定推出即可.【詳解】解:因為(已知),所以(垂直的定義),同理.所以(等量代換),即.因為(已知),所以(等式的性質,所以(內錯角相等,兩直線平行).故答案為:垂直的定義;等量代換;等式的性質1;內錯角相等,兩直線平行【考點】本題考查了垂直定義和平行線的判定的應用,熟練掌握平行線的判定是解題關鍵.5、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質可得,由(1)可得,從而得到,利用三角形內角和的性質即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質可得∴,∴,【考點】此題考查了全等三角形的判定與性質,三角形內角的性質以及三角形外角的性質,解題的關鍵是熟練掌握相關基本性質.6、(1)∠BDC=∠A+∠B+∠C,詳見解析;(2)①40;②∠DCE=90°;③70【解析】【分析】(1)根據(jù)題意觀察圖形連接AD并延長至點F,根據(jù)一個三角形的外角等于與它不相鄰的兩個內角的和可證∠BDC=∠BDF+∠CDF;(2)①由(1)的結論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②結合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結論可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由②方法,進而可得答案.【詳解】解:(1)連接AD并延長至點F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論