




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波市慈溪市慈溪市附海初級中學(xué)2026屆中考一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則這個幾何體的主視圖是()A. B. C. D.2.在平面直角坐標(biāo)系xOy中,四條拋物線如圖所示,其解析式中的二次項系數(shù)一定小于1的是()A.y1 B.y2 C.y3 D.y43.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.234.在同一平面直角坐標(biāo)系中,一次函數(shù)y=kx﹣2k和二次函數(shù)y=﹣kx2+2x﹣4(k是常數(shù)且k≠0)的圖象可能是()A. B.C. D.5.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(
)A.30° B.35° C.40° D.50°6.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且7.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C逆時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.48.計算(x-2)(x+5)的結(jié)果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-109.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.1410.如圖,若AB∥CD,則α、β、γ之間的關(guān)系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°11.下列圖形中,是正方體表面展開圖的是()A. B. C. D.12.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD=.14.已知二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,且,則________.15.如圖,已知函數(shù)y=3x+b和y=ax﹣3的圖象交于點P(﹣2,﹣5),則根據(jù)圖象可得不等式3x+b>ax﹣3的解集是_____.16.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.17.如圖,角α的一邊在x軸上,另一邊為射線OP,點P(2,2),則tanα=_____.18.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內(nèi)接于⊙O,則圖中陰影部分面積為_____cm1.(結(jié)果保留π)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某區(qū)對即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調(diào)查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?20.(6分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).21.(6分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達(dá)點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.22.(8分)如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.23.(8分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.24.(10分)某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計圖中景點A所對應(yīng)的圓心角的度數(shù)是多少,請直接補全條形統(tǒng)計圖;(3)根據(jù)預(yù)測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?25.(10分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到米)(參考數(shù)據(jù):,,)26.(12分)如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.求一次函數(shù)的表達(dá)式;若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.27.(12分)為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當(dāng)?shù)某跞昙夁M(jìn)行調(diào)研,命題教師將隨機抽取的部分學(xué)生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調(diào)查共隨機抽取了該年級多少名學(xué)生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學(xué)生中,考試成績評為“B”的學(xué)生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學(xué)談?wù)勛鲱}的感想,請你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據(jù)此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.2、A【解析】
由圖象的點的坐標(biāo),根據(jù)待定系數(shù)法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據(jù)待定系數(shù)法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據(jù)待定系數(shù)法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據(jù)待定系數(shù)法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據(jù)待定系數(shù)法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數(shù)一定小于1的是y1故選A.【點睛】本題考查了二次函數(shù)的圖象,二次函數(shù)的性質(zhì)以及待定系數(shù)法求二次函數(shù)的解析式,根據(jù)點的坐標(biāo)求得解析式是解題的關(guān)鍵.3、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.4、C【解析】
根據(jù)一次函數(shù)與二次函數(shù)的圖象的性質(zhì),求出k的取值范圍,再逐項判斷即可.【詳解】解:A、由一次函數(shù)圖象可知,k>0,∴﹣k<0,∴二次函數(shù)的圖象開口應(yīng)該向下,故A選項不合題意;B、由一次函數(shù)圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數(shù)的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數(shù)圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數(shù)的圖象開口向上,且對稱軸在x軸的負(fù)半軸,一次函數(shù)必經(jīng)過點(2,0),當(dāng)x=2時,二次函數(shù)值y=﹣4k>0,故C選項符合題意;D、由一次函數(shù)圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數(shù)的圖象開口向上,且對稱軸在x軸的負(fù)半軸,一次函數(shù)必經(jīng)過點(2,0),當(dāng)x=2時,二次函數(shù)值y=﹣4k>0,故D選項不合題意;故選:C.【點睛】本題考查一次函數(shù)與二次函數(shù)的圖象和性質(zhì),解決此題的關(guān)鍵是熟記圖象的性質(zhì),此外,還要主要二次函數(shù)的對稱軸、兩圖象的交點的位置等.5、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).6、D【解析】
根據(jù)二次根式和分式有意義的條件計算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點睛】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.7、D【解析】
如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關(guān)鍵.8、C【解析】
根據(jù)多項式乘以多項式的法則進(jìn)行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關(guān)鍵.9、A【解析】
根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點睛】本題考查了菱形的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.10、C【解析】
過點E作EF∥AB,如圖,易得CD∥EF,然后根據(jù)平行線的性質(zhì)可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進(jìn)一步即得結(jié)論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質(zhì),屬于??碱}型,作EF∥AB、熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.11、C【解析】
利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.12、D【解析】
根據(jù)有理數(shù)乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、65°【解析】
解:由題意分析之,得出弧BD對應(yīng)的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關(guān)系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質(zhì)要熟練把握14、-12【解析】
令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點的橫坐標(biāo)就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.15、x>﹣1.【解析】
根據(jù)函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),然后根據(jù)圖象即可得到不等式
3x+b>ax-3的解集.【詳解】解:∵函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),∴不等式
3x+b>ax-3的解集是x>-1,故答案為:x>-1.【點睛】本題考查一次函數(shù)與一元一次不等式、一次函數(shù)的圖象,熟練掌握是解題的關(guān)鍵.16、250【解析】
從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h(yuǎn)=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.17、【解析】解:過P作PA⊥x軸于點A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案為.點睛:本題考查了解直角三角形,正切的定義,坐標(biāo)與圖形的性質(zhì),熟記三角函數(shù)的定義是解題的關(guān)鍵.18、【解析】試題分析:根據(jù)圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉(zhuǎn)化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內(nèi)接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、200名初中畢業(yè)生的視力情況200600.05【解析】
(1)根據(jù)視力在4.0≤x<4.3范圍內(nèi)的頻數(shù)除以頻率即可求得樣本容量;(2)根據(jù)樣本容量,根據(jù)其對應(yīng)的已知頻率或頻數(shù)即可求得a,b的值;(3)求出樣本中視力正常所占百分比乘以5000即可得解.【詳解】(1)根據(jù)題意得:20÷0.1=200,即本次調(diào)查的樣本容量為200,故答案為200;(2)a=200×0.3=60,b=10÷200=0.05,補全頻數(shù)分布圖,如圖所示,故答案為60,0.05;(3)根據(jù)題意得:5000×=3500(人),則全區(qū)初中畢業(yè)生中視力正常的學(xué)生有估計有3500人.20、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值21、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).22、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點坐標(biāo)代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點B的坐標(biāo),然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當(dāng)y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數(shù)與反比例函數(shù)的綜合問題.23、(1)見解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.24、(1)60人;(2)144°,補全圖形見解析;(3)15萬人.【解析】
(1)用B景點人數(shù)除以其所占百分比可得;(2)用360°乘以A景點人數(shù)所占比例即可,根據(jù)各景點人數(shù)之和等于總?cè)藬?shù)求得C的人數(shù)即可補全條形圖;(3)用總?cè)藬?shù)乘以樣本中D景點人數(shù)所占比例【詳解】(1)今年“五?一”放假期間該市這四個景點共接待游客的總?cè)藬?shù)為18÷30%=60萬人;(2)扇形統(tǒng)計圖中景點A所對應(yīng)的圓心角的度數(shù)是360°×=144°,C景點人數(shù)為60﹣(24+18+10)=8萬人,補全圖形如下:(3)估計選擇去景點D旅游的人數(shù)為90×=15(萬人).【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?5、6.58米【解析】試題分析:過A點作AE⊥CD于E.在Rt△ABE中,根據(jù)三角函數(shù)可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程項目評優(yōu)匯報
- 反詐舉措工作匯報
- 高校網(wǎng)絡(luò)信息安全講座
- 面向2025年商業(yè)銀行金融科技人才梯隊建設(shè)與培養(yǎng)模式研究報告
- 農(nóng)業(yè)保價協(xié)議書
- 養(yǎng)牛領(lǐng)養(yǎng)協(xié)議書
- 共享戰(zhàn)略協(xié)議書
- 農(nóng)村家宴安全知識培訓(xùn)課件會
- 婦嬰護理培訓(xùn)
- 肺占位手術(shù)術(shù)前護理
- 2025年采購人員考試題庫及答案
- 派出所戶籍人口管理課件
- 醫(yī)美培訓(xùn)課件
- 不買社保勞動合同范本
- 《機井施工方案》
- 美容院店長培訓(xùn)
- 病理技術(shù)課件教學(xué)
- GB/T 45817-2025消費品質(zhì)量分級陶瓷磚
- 2025-2030中國功能性食品宣稱規(guī)范與營銷合規(guī)邊界研究
- 商務(wù)英語專業(yè)教學(xué)標(biāo)準(zhǔn)(高等職業(yè)教育專科)2025修訂
- 醫(yī)療收費培訓(xùn)課件
評論
0/150
提交評論