2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題含解析_第1頁
2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題含解析_第2頁
2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題含解析_第3頁
2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題含解析_第4頁
2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆湖南省師大附中博才實驗中學中考一模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a62.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.243.當ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.4.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對5.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.6.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(

)A.6.5千克B.7.5千克C.8.5千克D.9.5千克7.若關(guān)于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠49.下列二次根式中,最簡二次根式的是()A. B. C. D.10.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣111.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.12.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD=.14.已知a+=2,求a2+=_____.15.中國的陸地面積約為9600000km2,把9600000用科學記數(shù)法表示為.16.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經(jīng)過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.17.如果點、是二次函數(shù)是常數(shù)圖象上的兩點,那么______填“”、“”或“”18.如圖所示,直線y=x+b交x軸A點,交y軸于B點,交雙曲線于P點,連OP,則OP2﹣OA2=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.20.(6分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結(jié)果保留根號).21.(6分)海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.22.(8分)甲、乙、丙、丁四位同學進行乒乓球單打比賽,要從中選出兩位同學打第一場比賽.若確定甲打第一場,再從其余三位同學中隨機選取一位,恰好選中乙同學的概率是.若隨機抽取兩位同學,請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.23.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結(jié)DM,交AB于點N.若tanA=12,求DN24.(10分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).25.(10分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?26.(12分)為倡導“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45cm和60cm,且它們互相垂直,座桿CE的長為20cm.點A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求車架檔AD的長;(2)求車座點E到車架檔AB的距離(結(jié)果精確到1cm).27.(12分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關(guān)鍵是掌握各計算法則.2、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關(guān)鍵.3、D【解析】

∵ab>0,∴a、b同號.當a>0,b>0時,拋物線開口向上,頂點在原點,一次函數(shù)過一、二、三象限,沒有圖象符合要求;當a<0,b<0時,拋物線開口向下,頂點在原點,一次函數(shù)過二、三、四象限,B圖象符合要求.故選B.4、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.5、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.6、C【解析】【分析】設(shè)每個小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設(shè)每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關(guān)系是解答本題的關(guān)鍵.7、B【解析】試題解析:∵關(guān)于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.8、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對頂角,不能判斷a與b是否平行,故D錯誤.故選D.考點:平行線的判定.9、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.10、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.11、C【解析】

求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.12、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、65°【解析】

解:由題意分析之,得出弧BD對應的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關(guān)系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質(zhì)要熟練把握14、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點:完全平方公式.15、9.6×1.【解析】

將9600000用科學記數(shù)法表示為9.6×1.故答案為9.6×1.16、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.17、【解析】

根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對稱軸左側(cè)圖象的增減性,【詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學思想.18、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點P,設(shè)P點的坐標(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)+【解析】

(1)利用題中的邊的關(guān)系可求出△OAC是正三角形,然后利用角邊關(guān)系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質(zhì)就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【點睛】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質(zhì)以及圓周角定理、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.20、旗桿AB的高為(4+1)m.【解析】試題分析:過點C作CE⊥AB于E,過點B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長度.在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.試題解析:解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.21、有觸礁危險,理由見解析.【解析】試題分析:過點P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根據(jù)三角函數(shù)AD,BD就可以用PD表示出來,根據(jù)AB=12海里,就得到一個關(guān)于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.試題解析:有觸礁危險.理由:過點P作PD⊥AC于D.設(shè)PD為x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°-60°=30°∴AD=∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴漁船不改變航線繼續(xù)向東航行,有觸礁危險.【點睛】本題主要考查解直角三角形在實際問題中的應用,構(gòu)造直角三角形是解題的前提和關(guān)鍵.22、(1)13;(2)【解析】

1)由題意可得共有乙、丙、丁三位同學,恰好選中乙同學的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,確定甲打第一場,再從其余的三位同學中隨機選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.23、(1)見解析;(2)23π;(3)【解析】

(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結(jié)OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論