內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷含解析_第1頁
內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷含解析_第2頁
內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷含解析_第3頁
內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷含解析_第4頁
內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古自治區(qū)鄂爾多斯市準格爾旗達標名校2026屆中考數(shù)學對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.整數(shù)a、b在數(shù)軸上對應點的位置如圖,實數(shù)c在數(shù)軸上且滿足,如果數(shù)軸上有一實數(shù)d,始終滿足,則實數(shù)d應滿足().A. B. C. D.2.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.3.在下列網(wǎng)格中,小正方形的邊長為1,點A、B、O都在格點上,則的正弦值是A. B. C. D.4.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.5.一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.6.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,67.下列各數(shù)中,為無理數(shù)的是()A. B. C. D.8.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是69.在一次中學生田徑運動會上,參加跳遠的名運動員的成績如下表所示:成績(米)人數(shù)則這名運動員成績的中位數(shù)、眾數(shù)分別是()A. B. C., D.10.如圖,矩形ABCD內接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y=的圖象上,則k的值為________.12.計算的結果等于_____________.13.關于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.14.閱讀下面材料:在數(shù)學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據(jù)是______.15.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結果保留根號).16.若+(y﹣2018)2=0,則x﹣2+y0=_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.18.(8分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.19.(8分)解不等式組:并寫出它的所有整數(shù)解.20.(8分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.21.(8分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.22.(10分)某水果店購進甲乙兩種水果,銷售過程中發(fā)現(xiàn)甲種水果比乙種水果銷售量大,店主決定將乙種水果降價1元促銷,降價后30元可購買乙種水果的斤數(shù)是原來購買乙種水果斤數(shù)的1.5倍.(1)求降價后乙種水果的售價是多少元/斤?(2)根據(jù)銷售情況,水果店用不多于900元的資金再次購進兩種水果共500斤,甲種水果進價為2元/斤,乙種水果進價為1.5元/斤,問至少購進乙種水果多少斤?23.(12分)某商場銷售一批名牌襯衫,平均每天可以銷售20件,每件盈利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調查發(fā)現(xiàn),如果每件襯衫降價1元,商場平均每天多售出2件,若商場平均每天要盈利1200元,每件襯衫應降價多少元?24.已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;(2)參考(1)中構造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)a≤c≤b,可得c的最小值是﹣1,根據(jù)有理數(shù)的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用a≤c≤b得出c的最小值是﹣1是解題的關鍵.2、D【解析】

根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.3、A【解析】

由題意根據(jù)勾股定理求出OA,進而根據(jù)正弦的定義進行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、B【解析】

以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.5、B【解析】

朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.6、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術平均數(shù).7、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無理數(shù),故選D.8、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.9、D【解析】

根據(jù)中位數(shù)、眾數(shù)的定義即可解決問題.【詳解】解:這些運動員成績的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎題.10、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數(shù)上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對角線乘積的一半得:,解得12、a3【解析】試題解析:x5÷x2=x3.考點:同底數(shù)冪的除法.13、1【解析】

先根據(jù)根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關系是解題的關鍵.14、兩點確定一條直線;同圓或等圓中半徑相等【解析】

根據(jù)尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關鍵.15、一4【解析】

分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應用,熟練掌握三角函數(shù)的相關定義以及變形是解題的關鍵.16、1【解析】

直接利用偶次方的性質以及二次根式的性質分別化簡得出答案.【詳解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,則x﹣1+y0=1﹣1+10180=1+1=1.故答案為:1.【點睛】此題主要考查了非負數(shù)的性質,正確得出x,y的值是解題關鍵.三、解答題(共8題,共72分)17、8+6.【解析】

如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,【點睛】本題考查解直角三角形,銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.18、(1)見解析;(2)70°;(3)1.【解析】

(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質,圓內接四邊形的性質,等腰三角形的性質等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.19、原不等式組的解集為,它的所有整數(shù)解為0,1.【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后寫出它的所有整數(shù)解即可.【詳解】解:,解不等式①,得,解不等式②,得x<2,∴原不等式組的解集為,它的所有整數(shù)解為0,1.【點睛】本題主要考查了一元一次不等式組解集的求法.解一元一次不等式組的簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).20、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據(jù)△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據(jù)∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據(jù)∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大?。謨煞N情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最小;當CE在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大?。佼斝∪切涡D到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.21、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標代入一次函數(shù)上可得出點B的坐標,由點B的坐標,利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結合PD∥x軸可得出點D的坐標,由折疊的性質可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設,則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標特征、三角形的面積、折疊的性質以及平行四邊形的判定,解題的關鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.22、(1)降價后乙種水果的售價是2元/斤;(2)至少購進乙種水果200斤.【解析】

(1)設降價后乙種水果的售價是x元,30元可購買乙種水果的斤數(shù)是,原來購買乙種水果斤數(shù)是,根據(jù)題意即可列出等式;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論