




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
烏魯木齊第四中學7年級數學下冊第四章三角形定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,為估計池塘岸邊A、B兩點的距離,小方在池塘的一側選取一點O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米2、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,53、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,104、如圖,為了估算河的寬度,我們可以在河的對岸選定一個目標點,再在河的這一邊選定點和,使,并在垂線上取兩點、,使,再作出的垂線,使點、、在同一條直線上,因此證得,進而可得,即測得的長就是的長,則的理論依據是()A. B. C. D.5、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.166、在△ABC中,若AB=3,BC=4,且周長為奇數,則第三邊AC的長可以是()A.1 B.3 C.4 D.57、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有()A.1個 B.2個 C.3個 D.4個8、下列三角形與下圖全等的三角形是()A. B.C. D.9、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.561110、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數為()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數為_____°.2、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉90°至AB′,連接B'C,則△AB′C的面積為_____.3、邊長為1的小正方形組成如圖所示的6×6網格,點A,B,C,D,E,F,G,H都在格點上.其中到四邊形ABCD四個頂點距離之和最小的點是_________.4、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.5、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.6、如圖,,,,則、兩點之間的距離為______.7、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.8、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.9、如圖,AB=DE,AC=DF,BF=CE,點B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.10、如圖,△ABC的面積等于35,AE=ED,BD=3DC,則圖中陰影部分的面積等于_______三、解答題(6小題,每小題10分,共計60分)1、如圖,點B、F、C、E在同一條直線上,∠B=∠E,AB=DE,BF=CE.求證:AC=DF.2、如圖,在中,,,點D是內一點,連接CD,過點C作且,連接AD,BE.求證:.3、已知銳角,,于,于F,交于E.求證:ΔBDE≌若BD=8,DC=6,求線段BE的長度.4、如圖,在長方形ABCD中,AD=3,DC=5,動點M從A點出發(fā)沿線段AD—DC以每秒1個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD—DA以每秒3個單位長度的速度向終點A運動.ME⊥PQ于點E,NF⊥PQ于點F,設運動的時間為秒.(1)在運動過程中當M、N兩點相遇時,求t的值.(2)在整個運動過程中,求DM的長.(用含t的代數式表示)(3)當DEM與DFN全等時,請直接寫出所有滿足條件的DN的長.5、在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當直線MN繞點C旋轉到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數量關系為.(探究)(2)當直線MN繞點C旋轉到圖②的位置時,求證:DE=AD-BE.(3)當直線MN繞點C旋轉到圖③的位置時,直接寫出DE、AD、BE之間的數量關系.6、如圖,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的長.-參考答案-一、單選題1、A【分析】根據三角形的三邊關系得出5<AB<25,根據AB的范圍判斷即可.【詳解】解:連接AB,根據三角形的三邊關系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點睛】本題主要考查對三角形的三邊關系定理的理解和掌握,能正確運用三角形的三邊關系定理是解此題的關鍵.2、D【分析】根據兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構成三角形;∵3+2=5,∴B不能構成三角形;∵3+4<8,∴C不能構成三角形;∵∵3+4>5,∴D能構成三角形;故選D.【點睛】本題考查了三角形的三邊關系定理,熟練掌握性質定理是解題的關鍵.3、D【分析】根據圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.4、C【分析】根據題意及全等三角形的判定定理可直接進行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點睛】本題主要考查全等三角形的性質與判定,熟練掌握全等三角形的性質與判定是解題的關鍵.5、C【分析】延長BD交AC于點E,根據角平分線及垂直的性質可得:,,依據全等三角形的判定定理及性質可得:,,再根據三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質,角平分線的定義等,熟練掌握基礎知識,進行邏輯推理是解題關鍵.6、C【分析】先求解的取值范圍,再利用周長為奇數,可得為偶數,從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數,而為偶數,或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關鍵.7、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質,外角的性質等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關鍵.8、C【分析】根據已知的三角形求第三個內角的度數,由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個內角的度數為,A.只有兩邊,故不能判斷三角形全等,故此選項錯誤;B.兩邊夾的角度數不相等,故兩三角形不全等,故此選項錯誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項正確;D.兩邊夾的角度數不相等,故兩三角形不全等,故此選項錯誤.故選:C.【點睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關鍵.9、C【分析】根據三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關鍵.10、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質,是重要考點,掌握相關知識是解題關鍵.二、填空題1、100【分析】直接利用三角形的外角的性質得出∠CEO=80°,再利用全等三角形的性質得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質以及三角形的外角的性質,求出∠CEO=80°是解題關鍵.2、【分析】根據題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質和旋轉的性質以及勾股定理,根據題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關鍵.3、E【分析】到四邊形ABCD四個頂點距離之和最小的點是對角線的交點,連接對角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個頂點距離之和最小是,該點為對角線的交點,根據圖形可知,對角線交點為E,故答案為:E.【點睛】本題考查了三角形三邊關系,解題關鍵是通過連接輔助線,運用三角形三邊關系判斷點的位置.4、16cm或14cm【分析】根據題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當腰為6cm時,它的周長為6+6+4=16(cm);②當底為6cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質的應用,注意:等腰三角形的兩腰相等,注意分類討論.5、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質,根據題意得出關于的方程是解題的關鍵.6、55【分析】根據題意首先證明△AOB和△DOC全等,再根據全等三角形對應邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應用以及兩點之間的距離,解題的關鍵是掌握全等三角形對應邊相等.7、【分析】如圖(見解析),先根據三角形全等的判定定理證出,再根據全等三角形的性質可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質等知識點,正確找出兩個全等三角形是解題關鍵.8、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.9、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據三角形三邊關系求解即可.【詳解】解:∵BF=CE,點B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點睛】本題考查三角形的三邊關系,熟知一個三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關鍵.10、15【分析】連接DF,根據AE=ED,BD=3DC,可得,,,,然后設△AEF的面積為x,△BDE的面積為y,則,,,,再由△ABC的面積等于35,即可求解.【詳解】解:如圖,連接DF,∵AE=ED,∴,,∵BD=3DC,∴,設△AEF的面積為x,△BDE的面積為y,則,,,,∵△ABC的面積等于35,∴,解得:.故答案為:15【點睛】本題主要考查了與三角形中線有關的面積問題,根據題意得到,,,是解題的關鍵.三、解答題1、見解析【分析】根據題意得出BC=EF,即可利用SAS證明△ABC和△DEF,再利用全等三角形的性質即可得解.【詳解】證明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF.【點睛】本題考查了全等三角形的判定與性質,利用SAS證明△ABC≌△DEF是解題的關鍵.2、證明見解析.【分析】先根據角的和差可得,再根據三角形全等的判定定理證出,然后根據全等三角形的性質即可得證.【詳解】證明:,,,,,在和中,,,.【點睛】本題考查了三角形全等的判定定理與性質等知識點,熟練掌握三角形全等的判定方法是解題關鍵.3、(1)見解析;(2)10.【分析】(1)由題意可得AD=BD,由余角的性質可得∠CBE=∠DAC,根據“ASA”可證△BDE≌△ADC;(2)由全等三角形的性質可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長度.【詳解】(1)證明:∵,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠ACD+∠DAC=90°,∠ACD+∠CBE=90°∴∠CBE=∠DAC,∵AD=BD,∠ADC=∠ADB=90°∴△BDE≌△ADC{ASA);(2)∵△BDE≌△ADC∴AD=BD=8,CD=DE=6,BE=AC∴【點睛】本題主要考查了全等三角形的判定與性質、勾股定理等知識點,靈活應用全等三角形的判定與性質成為解答本題的關鍵.4、(1)2;(2)當0≤t≤3時,DM=3-t,當3<t≤8時,DM=t-3;(3)2或1【分析】(1)根據題意得:,解得:,即可求解;(2)根據題意得:當0≤t≤3時,AM=t,則DM=3-t,當3<t≤8時,DM=t-3,即可求解;(3)根據ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME=∠FDN,從而得到當DEM與DFN全等時,DM=DN,根據題意可得M到達點D時,,M到達點C時,,N到達點D時,,N到達點A時,,然后分兩種情況:當時和當時,即可求解.【詳解】解:(1)根據題意得:,解得:,即在運動過程中當M、N兩點相遇時,t的值為2;(2)根據題意得:當0≤t≤3時,AM=t,則DM=3-t,當3<t≤8時,DM=t-3;(3)∵ME⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∴∠EDM+∠DME=90°,∵∠ADC=90°,∴∠EDM+∠FDN=90°,∴∠DME=∠FDN,∴當DEM與DFN全等時,DM=DN,∵M到達點D時,,M到達點C時,,N到達點D時,,N到達點A時,,當時,DM=3-t,CN=3t,則DN=5-3t,∴3-t=5-3t,解得:t=1,∴此時DN=5-3t=2,當時,DM=3-t,DN=3t-5,∴3-t=3t-5,解得:,∴DN=3t-5=1,綜上所述,當DEM與DFN全等時,所有滿足條件的DN的長為2或1.【點睛】本題主要考查了全等三角形的判定和性質,動點問題,利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電子商務公司客戶服務代表勞動合同
- 二零二五年圖書翻譯兼職合作協議
- 2025版生態(tài)環(huán)保工程勘察設計合同示范文本
- 2025版?zhèn)€人房產交易合同范本
- 2025版亮化工程勞務派遣合同范本版
- 2025年新型集裝箱貨物海上運輸保險合同范本
- 2025版城市公共服務設施建設項目工程總承包合作協議書
- 二零二五年定制化電池維修與技術支持服務合同
- 2025版房產中介居間服務合同范本
- 二零二五年度特色小鎮(zhèn)項目多方聯合開發(fā)合同
- 品牌聯名管理制度內容
- 2024年寶雞市中心醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 三年級脫式計算500題可直接打印
- 超高效液相色譜-三重四極桿質譜聯用儀技術參數
- 2024至2030年海釣抄網項目投資價值分析報告
- DB32-T 4289-2022 安全生產培訓機構教學服務規(guī)范
- 幼兒園 中班語言繪本《章魚先生賣雨傘》
- 專項24-正多邊形與圓-重難點題型
- 國家資格等級證書-驗光員-2.視功能檢查評分表(助教學生填寫)
- 非新生兒破傷風診療規(guī)范(2024年版)解讀
- 浙江省嘉興市2024-2025學年高三基礎測試試卷語文
評論
0/150
提交評論