強(qiáng)化訓(xùn)練河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析試題(含答案解析版)_第1頁
強(qiáng)化訓(xùn)練河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析試題(含答案解析版)_第2頁
強(qiáng)化訓(xùn)練河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析試題(含答案解析版)_第3頁
強(qiáng)化訓(xùn)練河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析試題(含答案解析版)_第4頁
強(qiáng)化訓(xùn)練河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析試題(含答案解析版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省滎陽市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點(diǎn),A點(diǎn)有一只螞蟻,想到B點(diǎn)去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(

)A.6 B.8 C.9 D.152、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個動點(diǎn),若,則的最小值為(

)A.2 B.3 C.4 D.53、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.4、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(

)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形5、如圖,△OAB的頂點(diǎn)O(0,0),頂點(diǎn)A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點(diǎn)A的坐標(biāo)是(

)A. B. C. D.6、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個正方形的面積和為(

)A.5 B.9 C.16 D.257、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則MC2-MB2等于(

)A.29 B.32 C.36 D.45第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時俱進(jìn),把育英學(xué)校建成一所文明的、受社會尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.2、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_(dá)______米.3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.4、如圖,在矩形中,,垂足為點(diǎn).若,,則的長為______.5、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.6、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_____________.

7、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個動點(diǎn),△AD'E與△ADE關(guān)于直線AE對稱,當(dāng)△CD'E為直角三角形時,DE的長為__.8、我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長度是_______尺.

三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點(diǎn),修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點(diǎn)的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應(yīng)建什么位置才能符合要求?2、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.3、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設(shè)計(jì)了一種測量方法,如圖,已知B是CD的中點(diǎn),E是BA延長線上的一點(diǎn),且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點(diǎn)C作CF⊥AB交AB的延長線于點(diǎn)F,求值.4、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?5、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長.6、若的三邊,,滿足條件,試判斷的形狀.7、如圖是一個長方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.-參考答案-一、單選題1、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點(diǎn)到A點(diǎn)的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因?yàn)锳C=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時,PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果

a2=b2-c2,即b2=a2+c2,那么△ABC

是直角三角形且∠B=90°,選項(xiàng)錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項(xiàng)正確,不符合題意;C、如果

a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC

是直角三角形,選項(xiàng)正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項(xiàng)正確,不符合題意;故選:A.【考點(diǎn)】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.5、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點(diǎn)A的坐標(biāo)是(4,3),故選:D.【考點(diǎn)】本題考查了坐標(biāo)與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.6、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.7、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點(diǎn)】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點(diǎn),重點(diǎn)還是在于勾股定理的熟練掌握.二、填空題1、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.2、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.3、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.4、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點(diǎn),難度較易,掌握相關(guān)知識是解題關(guān)鍵.5、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.6、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.7、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.8、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.三、解答題1、大櫻桃批發(fā)市場E應(yīng)建在離A站20千米的地方【解析】【分析】由勾股定理兩直角邊的平方和等于斜邊的平方分別求出和,列等式求解即可.【詳解】解:設(shè)大櫻桃批發(fā)市場E應(yīng)建在離A站x千米的地方,則千米.在直角中,根據(jù)勾股定理得:,∴,在直角中,根據(jù)勾股定理得:,∴.又∵C、D兩村到E點(diǎn)的距離相等,∴,∴,所以,解得.∴大櫻桃批發(fā)市場E應(yīng)建在離A站20千米的地方.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,掌握兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.2、216平方米【解析】【分析】連接AC,根據(jù)勾股定理計(jì)算AC,根據(jù)勾股定理的逆定理判定三角形ABC是直角三角形,根據(jù)面積公式計(jì)算即可.【詳解】連接AC,∵AD=12,CD=9,∠ADC=90°,∴AC==15,∵AB=39,BC=36,AC=15∴,∴∠ACB=90°,∴這塊空地的面積為:==216(平方米),故這塊草坪的面積216平方米.【考點(diǎn)】本題考查了勾股定理及其逆定理,熟練掌握定理并靈活運(yùn)用是解題的關(guān)鍵.3、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點(diǎn),∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-x2,在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即,解得x=14,∴答:值為.【考點(diǎn)】本題主要考查了勾股定理的實(shí)際應(yīng)用的知識,在直角三角形中靈活利用勾股定理是解答本題的關(guān)鍵.4、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長度,再根據(jù)速度等于路程除以時間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.5、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點(diǎn)P是△APD的準(zhǔn)外心;(2)先利用勾股定理計(jì)算AC=4,再進(jìn)行討論:當(dāng)P點(diǎn)在AB上,PA=PB,當(dāng)P點(diǎn)在AC上,PA=PC,易得對應(yīng)AP的值;當(dāng)P點(diǎn)在AC上,PB=P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論