2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題含解析_第1頁
2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題含解析_第2頁
2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題含解析_第3頁
2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題含解析_第4頁
2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆甘肅省張掖市甘州區(qū)張掖市甘州區(qū)南關(guān)校中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)2.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤3.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.4.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山5.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設(shè)該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4406.下列調(diào)查中適宜采用抽樣方式的是()A.了解某班每個學生家庭用電數(shù)量B.調(diào)查你所在學校數(shù)學教師的年齡狀況C.調(diào)查神舟飛船各零件的質(zhì)量D.調(diào)查一批顯像管的使用壽命7.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個8.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過99.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.410.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,寬為的長方形圖案由8個相同的小長方形拼成,若小長方形的邊長為整數(shù),則的值為__________.12.如圖,數(shù)軸上不同三點對應(yīng)的數(shù)分別為,其中,則點表示的數(shù)是__________.13.閱讀材料:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識可知:當A、C、E在一條直線上時,x=時,AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____.14.如圖,點A在反比例函數(shù)y=(x>0)上,以O(shè)A為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.15.據(jù)報道,截止2018年2月,我國在澳大利亞的留學生已經(jīng)達到17.3萬人,將17.3萬用科學記數(shù)法表示為__________.16.拋物線y=x2﹣2x+3的對稱軸是直線_____.三、解答題(共8題,共72分)17.(8分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設(shè)點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.18.(8分)如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長.19.(8分)化簡,再求值:20.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.21.(8分)先化簡,再求值:,其中,.22.(10分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形23.(12分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學共有60個教學班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學生中,共有多少名留守兒童.24.如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.【點睛】本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關(guān)鍵.2、A【解析】

由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點判斷c與2的關(guān)系,然后根據(jù)對稱軸判定b與2的關(guān)系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).3、C【解析】

物體的俯視圖,即是從上面看物體得到的結(jié)果;根據(jù)三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關(guān)鍵是熟練的掌握幾何體三視圖的定義.4、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據(jù)此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.5、A【解析】

根據(jù)題意可以列出相應(yīng)的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系進行列方程.6、D【解析】

根據(jù)全面調(diào)查與抽樣調(diào)查的特點對各選項進行判斷.【詳解】解:了解某班每個學生家庭用電數(shù)量可采用全面調(diào)查;調(diào)查你所在學校數(shù)學教師的年齡狀況可采用全面調(diào)查;調(diào)查神舟飛船各零件的質(zhì)量要采用全面調(diào)查;而調(diào)查一批顯像管的使用壽命要采用抽樣調(diào)查.故選:D.【點睛】本題考查了全面調(diào)查與抽樣調(diào)查:全面調(diào)查與抽樣調(diào)查的優(yōu)缺點:全面調(diào)查收集的到數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調(diào)查不宜用全面調(diào)查.抽樣調(diào)查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關(guān)系到對總體估計的準確程度.7、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).8、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎(chǔ)題型.解方程的一般方法的掌握是解題的關(guān)鍵.10、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、16【解析】

設(shè)小長方形的寬為a,長為b,根據(jù)大長方形的性質(zhì)可得5a=3b,m=a+b=a+=,再根據(jù)m的取值范圍即可求出a的取值范圍,又因為小長方形的邊長為整數(shù)即可解答.【詳解】解:設(shè)小長方形的寬為a,長為b,由題意得:5a=3b,所以b=,m=a+b=a+=,因為,所以10<<20,解得:<a<,又因為小長方形的邊長為整數(shù),a=4、5、6、7,因為b=,所以5a是3的倍數(shù),即a=6,b==10,m=a+b=16.故答案為:16.【點睛】本題考查整式的列式、取值,解題關(guān)鍵是根據(jù)矩形找出小長方形的邊長關(guān)系.12、1【解析】

根據(jù)兩點間的距離公式可求B點坐標,再根據(jù)絕對值的性質(zhì)即可求解.【詳解】∵數(shù)軸上不同三點A、B、C對應(yīng)的數(shù)分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數(shù)與數(shù)軸,絕對值,關(guān)鍵是根據(jù)兩點間的距離公式求得B點坐標.13、4【解析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長,進而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當x=時,代數(shù)式有最小值,此時為:.故答案是:4.【點睛】考查最短路線問題,利用了數(shù)形結(jié)合的思想,可通過構(gòu)造直角三角形,利用勾股定理求解.14、1.【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點A的坐標為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數(shù)圖象點的坐標特征、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.15、1.73×1.【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將17.3萬用科學記數(shù)法表示為1.73×1.故答案為1.73×1.【點睛】本題考查了正整數(shù)指數(shù)科學計數(shù)法,根據(jù)科學計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.16、x=1【解析】

把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).三、解答題(共8題,共72分)17、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設(shè)直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據(jù)m=FG即可得m的值;②設(shè)點F與點G的坐標,根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側(cè)時與右側(cè)時的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點的坐標,再根據(jù)兩點關(guān)系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設(shè)直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側(cè)時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側(cè)時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(﹣3,0)或(﹣3,).【點睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.18、(1)證明見解析(2)4-3【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì),可得EO⊥AC,即BD⊥AC,根據(jù)平行四邊形的對角線互相垂直可證菱形,(2)根據(jù)平行四邊形的對角線互相平分可得AO=CO,BO=DO,再根據(jù)△EAC是等邊三角形可以判定EO⊥AC,并求出EA的長度,然后在Rt△ABO中,利用勾股定理列式求出BO的長度,即DO的長度,在Rt△AOE中,根據(jù)勾股定理列式求出EO的長度,再根據(jù)ED=EO-DO計算即可得解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AO=CO,DO=BO,∵△EAC是等邊三角形,EO是AC邊上中線,∴EO⊥AC,即BD⊥AC,∴平行四邊形ABCD是是菱形.(2)∵平行四邊形ABCD是是菱形,∴AO=CO==4,DO=BO,∵△EAC是等邊三角形,∴EA=AC=8,EO⊥AC,在Rt△ABO中,由勾股定理可得:BO=3,∴DO=BO=3,在Rt△EAO中,由勾股定理可得:EO=4∴ED=EO-DO=4-3.19、【解析】試題分析:把分式化簡,然后把x的值代入化簡后的式子求值就可以了.試題解析:原式==當時,原式=.考點:1.二次根式的化簡求值;2.分式的化簡求值.20、(1);(2)【解析】

(1)利用概率公式直接計算即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結(jié)果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.21、1【解析】分析:先把小括號內(nèi)的通分,按照分式的減法和分式的除法法則進行化簡,再把字母的值代入運算即可.詳解:原式

當x=-1、y=2時,

原式=-(-1)2+2×22

=-1+8

=1.點睛:本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.22、(1);(2);(3).【解析】

(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;(3)根據(jù)四邊形ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變?yōu)榱恕鰽BC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質(zhì),理解[θ,n]的意義是解題的關(guān)鍵.23、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】

(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進而補全條形統(tǒng)計圖;(2)將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論