




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題06有理數(shù)的乘法和除法
內容導航——預習三步曲
第一步:學
析教材學知識:教材精講精析、全方位預習
練題型強知識:9大核心考點精準練
第二步:記
串知識識框架:思維導圖助力掌握知識框架、學習目標復核內容掌握
第三步:測
過關測穩(wěn)提升:小試牛刀檢測預習效果、查漏補缺快速提升
知識點01有理數(shù)的乘法法則
(1)兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.
(2)任何數(shù)同0相乘,都得0.
(3)多個有理數(shù)相乘的法則:①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇
數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.②幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
倒數(shù):乘積是1的兩個有理數(shù)互為倒數(shù).
【注意】:①0沒有倒數(shù);②倒數(shù)等于它本身的數(shù)有1和-1.
知識點02有理數(shù)的乘法運算律
(1)乘法交換律:abba;(2)乘法結合律:(ab)ca(bc);(3)乘法分配律:a(bc)abac.
知識點03確定乘積符號
(1)若a<0,b>0,則ab<0;(2)若a<0,b<0,則ab>0;(3)若ab>0,則a、b同號;
(4)若ab<0,則a、b異號;(5)若ab=0,則a、b中至少有一個數(shù)為0.
知識點04有理數(shù)除法法則
◆除以一個不為0的數(shù),等于乘以這個數(shù)的倒數(shù)
◆兩數(shù)相除(被除數(shù)不為0),同號得正,異號得負,并把絕對值相除.
【注意】:0除以任何不為0的數(shù),都得0.
【題型1兩個有理數(shù)的乘法運算】
例題:(2024七年級上·浙江·專題練習)計算:
1
32
(1);
23
25
(2)24;
8
56
(3)27;
3
38
(4).
47
【變式訓練】
1.(2024七年級上·全國·專題練習)計算:
(1)73
(2)32
21
(3)8
4
(4)1.50.631.8
2.(2024七年級上·浙江·專題練習)計算:
7
(1)12;
4
(2)81.25;
73
(3);
1014
38
(4);
169
3.(2024六年級上·上?!n}練習)計算
(1)02012;
(2)81.25;
73
(3)();
1014
38
(4)()();
169
(5)7.5(8.2)0(19.1);
145
(6)();
37
1
(7)(0.12)(100);
12
3
(8)7(1).
14
2
【題型2多個有理數(shù)的乘法運算】
例題:(2024七年級上·全國·專題練習)計算:
592
(1)(2);
4103
5412
(2)(3)11.
6547
【變式訓練】
1.(2024七年級上·全國·專題練習)計算:
(1)5632;
592
(2)2.
4103
2.(2024七年級上·全國·專題練習)計算:
(1)4512;
1
(2)31;
3
(3)1.2534.
3.(2024七年級上·全國·專題練習)計算:
(1)100.225;
347
(2);
7512
37
(3)50325;
3230
666
(4)785.
555
【題型3倒數(shù)】
1
例題:(2025·江蘇南京·二模)的倒數(shù)是.
3
【變式訓練】
4
1.(24-25六年級上·上?!るA段練習)2的倒數(shù)是.
7
1
2.(24-25六年級上·上海閔行·階段練習)2的倒數(shù)是.
2
3
3.(24-25七年級上·陜西榆林·階段練習)的相反數(shù)是,5的倒數(shù)為.
2
3
【題型4有理數(shù)乘法運算律】
375
例題:(24-25七年級上·吉林四平·期末)計算:24
4128
【變式訓練】
753
1.(24-25九年級下·山東濟南·開學考試)計算:136.
964
2.(24-25七年級上·廣東河源·期中)下面是樂樂同學進行有理數(shù)運算的過程,請認真閱讀并完成相應任務.
213
解:12
364
213
121212第一步
364
829第二步
109第三步
19.第四步
任務:
(1)填空:
①以上運算步驟中,第一步依據的運算律是;
②第步開始出現(xiàn)錯誤,錯誤的原因是.
(2)請直接寫出正確的計算結果.
3.(24-25七年級上·廣東江門·期中)計算:能用簡算的用簡算
155115
(1)12;
277227
23
(2)9918.
24
【題型5有理數(shù)乘法的實際應用】
例題:(24-25七年級上·廣東梅州·期中)某一出租車一天下午以鼓樓為出發(fā)點在東西方向運營,向東走為
正,向西走為負,行車里程(單位:km)依先后次序記錄如下:9,3,5,4,8,6,3,6,4,10.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2元,司機一個下午的營業(yè)額是多少?
【變式訓練】
1.(24-25七年級上·福建漳州·期中)海洋科考隊于某天早晨乘船從海島M出發(fā),在南北走向的海岸線上
進行科考活動.規(guī)定向北行進為正,向南行進為負.從出發(fā)到結束當天的科考活動時,他們的行進里程(單
位:海里)記錄如下:50,120,60,150,80,140,130,120.
(1)結束當天的科考活動時,科考隊是在海島M的北邊還是南邊?距離海島M有多遠?
(2)從出發(fā)到結束當天的科考活動,科考隊的船只總共行駛了多少海里?
4
(3)如果船只每行駛1海里耗油4升,那么在整個科考活動過程中,船只共耗油多少升?
2.(24-25七年級上·湖南永州·期中)道州臍橙“橙紅鮮美、香甜多汁”,因出產于永州市道縣而得名.現(xiàn)有
20筐道州臍橙,以每筐25千克的質量為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質量的差值(單位:千克)321.5012.5
筐數(shù)142328
(1)這20筐道州臍橙中,最重的一筐比最輕的一筐重多少千克?
(2)若道州臍橙每千克售價6元,則這20筐道州臍橙可賣多少元?
3.(24-25六年級上·上?!て谥校┩赓u送餐為我們生活帶來了許多便利,某學習小組調查了一名外賣小哥一
周的送餐情況,規(guī)定送餐量超過40單(送一次外賣為一單)的部分記為“”,低于40單的部分記為“”,
下表是該外賣小哥一周的送餐量:
星期一二三四五六日
送餐量/單536129814
(1)求外賣小哥這一周平均每天送餐多少單.
(2)外賣小哥每天的工資由底薪30元加上送單補貼構成,送單補貼的方案如下:每天送餐量不超過40單的
部分,每單補貼4元;超過40單但不超過50單的部分,每單補貼6元:超過50單的部分,每單補貼8元.求
外賣小哥這一周工資收入多少元.
【題型6有理數(shù)的除法運算】
例題:(2024七年級上·全國·專題練習)計算:
(1)6012;
1
(2)36;
3
(3)0.750.25;
1
(4)6.
6
【變式訓練】
1.(24-25七年級上·全國·課后作業(yè))計算:
(1)0(2);
(2)(315)(7);
33
(3)11;
5
(4)(0.75)(0.25).
2.(24-25七年級上·全國·假期作業(yè))計算:
5
(1)123
11
(2)21
36
1
(3)011
12
1
(4)12100
12
3.(2024七年級上·江蘇·專題練習)計算:
2
(1)5(1);
3
33
(2)3()();
44
331
(3)()()(1);
476
3
(4)9(0.1)(3).
5
【題型7有理數(shù)的乘除混合運算】
例題:(24-25六年級上·黑龍江哈爾濱·期中)計算:
338
(1);
10511
555
(2)6;
123618
819
(3)23;
172317
111
(4)24.
3412
【變式訓練】
1.(24-25七年級上·黑龍江·期中)計算:
385
(1);
598
7135
(2);
9236
514
(3)28;
1425
315
(4)12.
426
2.(2024七年級上·全國·專題練習)計算:
6
311
(1)313;
524
241
(2)5127;
754
1
(3)6.525.
3
3.(2024七年級上·全國·專題練習)計算.
851
(1);
389
14
(2)8128.
49
【題型8有理數(shù)的乘除混合運算之新定義型問題】
1b
例題:(2024七年級上·全國·專題練習)中考新趨勢?新定義若規(guī)定:ab,例如:
a2
131
2△3,試求(27)4的值.
223
【變式訓練】
1b
1.(24-25七年級上·陜西寶雞·階段練習)定義新運算“※”:對于有理數(shù)a,b(a,b都不為0),a※b().例
a2
1312
如:4※3().求(※9)※2的值.
4263
2.(24-25七年級上·廣東江門·階段練習)“”表示一種新的運算,它是這樣定義的:ab2a3b.例
如:1221324
(1)求34的值;
(2)求543的值.
3.(24-25七年級上·廣東惠州·階段練習)在有理數(shù)的范圍內,定義三個數(shù)之間的新運算“”,
abcabc
abc,
2
123123
例如1235.
2
(1)計算:428;
11
(2)計算:37;
3
523
(3)計算:.
234
7
【題型9有理數(shù)的除法中絕對值之分類討論問題】
例題:(24-25七年級上·浙江金華·期中)分類討論是一種重要的數(shù)學方法,如在化簡a時,可以這樣分類:
當a0時,aa;當a=0時,a0;當a0時,aa.用這種方法解決下列問題:
a
(1)當a5時,求的值.
a
a
(2)當a0時,求的值.
a
ab
(3)已知a,b是有理數(shù),當ab0時,試求的值.
ab
【變式訓練】
1.(23-24七年級上·貴州畢節(jié)·期末)有理數(shù)a,b,c在數(shù)軸上對應點的位置如圖所示.
(1)ac______0;(填“”或“”)
abc
(2)化簡:.
abc
xx0
2.(24-25七年級上·山東聊城·期中)閱讀下列材料并解決有關問題:我們知道x0x0,所以當x0
xx0
xxxx
時,1;當x0時,1,現(xiàn)在我們可以用這個結論來解決下面問題:
xxxx
ab
(1)已知a,b是有理數(shù),當ab0時,求的值;
ab
abc
(2)已知a,b,c是有理數(shù),當abc0,求的值;
abc
bcacab
(3)已知a,b,c是有理數(shù),abc0,abc0,求的值.
abc
3.(24-25七年級上·江蘇鹽城·期中)“分類討論”是一種重要數(shù)學思想方法,下面是運用分類討論的數(shù)學
思想解問題的過程,請仔細閱讀,并解答題目后提出的兩個問題.
|a||b||c|
例:三個有理數(shù)a,b,c滿足abc0,求的值.
abc
解:由題意得:a,b,c三個有理數(shù)都為正數(shù)或其中一個為正數(shù),另兩個為負數(shù).
①當a,b,c都是正數(shù),即a0,b0,c0時,
abcabc
則:1113;
abcabc
②當a,b,c有一個為正數(shù),另兩個為負數(shù)時,不妨設a0,b0,c0,
8
abcabc
則:1111,
accabc
|a||b||c|
綜上述:的值為3或1.
abc
請運用分類討論的數(shù)學思想方法解答下面的問題:
ab
(1)已知a,b是有理數(shù),當ab0時,求值.
|a||b|
bcacab
(2)已知a,b,c是有理數(shù),abc0,abc0,求的值.
abc
一、單選題
1.(2025·陜西延安·模擬預測)計算:23()
A.5B.6C.5D.6
2.(2025·湖南常德·二模)下面算式錯誤的是()
A.2323B.2323
1
C.2323D.232
3
9
1
3.(24-25七年級上·浙江溫州·階段練習)將下列運算符號填入算式10010的“W”中,使運算結果最
10
小的是()
A.B.C.D.
ab
4.(2025·山東濟南·二模)已知表示有理數(shù)a,b的點在數(shù)軸上的位置如圖所示,則2025的值是()
ab
A.2023B.2024C.2025D.2026
5.(2025·四川·模擬預測)定義一種新運算:ABBCCA.
如:35566343,則的值為()
A.18B.20C.28D.32
二、填空題
1
6.(2025·湖南·模擬預測)計算:2.
2
11
7.(2025·四川資陽·模擬預測)若1a0,比較a,,a,四個數(shù)的大小,并用“”連
aa
接.
8.(24-25七年級上·山東威?!て谀┤鐖D,按程序框圖中的順序計算,當輸入的初始值x為32時,則輸
出的最后結果為.
9.(24-25六年級上·上海普陀·期中)定義:對于數(shù)對a,b,如果abab,那么a,b稱為“和積等數(shù)對”.如:
333
因為2222,33,所以2,2,3,都是“和積等數(shù)對”.下列數(shù)對中,是“和積等數(shù)對”
444
的是.(填序號)
211
①3,1.5;②,2;③,.
523
ab
10.(24-25七年級上·湖北武漢·期末)下列說法:若ab0,則1;若a+b<0,且0,則
ba
①②
10
ab|c|
a3ba3b;若ab,則abab0;若abc0,ab0,c0,則1.其
a|b|c
中正確的有③.(填序號)④
三、解答題
11.(2024七年級上·全國·專題練習)計算:
31
(1)123.7524;
83
33
(2)(48)(12).
44
12.(2024七年級上·全國·專題練習)計算:
23
(1)23;
34
1
(2)156;
6
1
(3)8711.23.
3
13.(24-25七年級上·河南新鄉(xiāng)·階段練習)在1,2,3,4,5中任意取出兩個數(shù)相乘,最大的積是a,
最小的積是b.
(1)求ab的值;
(2)若xayb0,求xy的值.
14.(24-25七年級上·甘肅慶陽·期末)閱讀下列材料:
1111
計算:
243412
11111111
解法一:原式;
243244241224
1431121
解法二:原式;
2412121224124
1111111111
解法三:原式的倒數(shù)為242424248624,所以原式
34122434123412
1
4
(1)上面三種解法得出的結果不同,肯定有錯誤的解法,其中解法_________是錯誤的;
1115
(2)請你運用合適的方法計算:.
486312
1251
15.(2024七年級上·遼寧·專題練習)閱讀下面解題過程并解答問題:計算:15.
236
11
25
解:原式156(第一步)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腹膜透析護理查房模板
- 2025版教育機構課程內容編輯與教材供應協(xié)議
- 2025版貨物搬運與供應鏈金融合作協(xié)議
- 二零二五年度危險品運輸安全培訓合同
- 二零二五年度企業(yè)合同預算部精細化管理協(xié)議
- 二零二五年度股東股權轉讓他益權與公司分紅調整合同
- 2025年進口貨物運輸代理合同范本
- 2025版網絡安全防護技術解決方案服務合同
- 二零二五年度節(jié)能環(huán)保技術咨詢服務合同范本
- 二零二五年度房建勞務分包合同范本與施工合同備案規(guī)定
- 2025年市場營銷考試題及答案
- 2024-2025學年北京市海淀區(qū)北師大版三年級下冊期末考試數(shù)學試卷(含答案)
- 2025至2030中國電鍍工業(yè)園區(qū)行業(yè)產業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 妊娠合并精神病護理查房
- 選礦廠安全操作規(guī)程培訓
- 樂乎培訓師評級管理制度
- 保溫材料倉庫管理制度
- 公司董事長辦公室管理制度
- 2025至2030年中國漢麻行業(yè)市場調研分析及發(fā)展規(guī)模預測報告
- 檢驗批資料管理制度
- 造紙技師試題及答案
評論
0/150
提交評論