強(qiáng)化訓(xùn)練滬科版9年級下冊期末試題及完整答案詳解【考點(diǎn)梳理】_第1頁
強(qiáng)化訓(xùn)練滬科版9年級下冊期末試題及完整答案詳解【考點(diǎn)梳理】_第2頁
強(qiáng)化訓(xùn)練滬科版9年級下冊期末試題及完整答案詳解【考點(diǎn)梳理】_第3頁
強(qiáng)化訓(xùn)練滬科版9年級下冊期末試題及完整答案詳解【考點(diǎn)梳理】_第4頁
強(qiáng)化訓(xùn)練滬科版9年級下冊期末試題及完整答案詳解【考點(diǎn)梳理】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°2、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.3、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.4、如圖,在中,,,,將繞原點(diǎn)O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.5、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等?。虎郯霃较嗟鹊膬蓚€圓是等圓;④弧分優(yōu)弧和劣?。虎萃粭l弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個6、在中,,,給出條件:①;②;③外接圓半徑為4.請?jiān)诮o出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③7、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.8、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點(diǎn)C逆時針旋轉(zhuǎn)60°,得到△MNC,那么BM=______________.2、如圖,、分別與相切于A、B兩點(diǎn),若,則的度數(shù)為________.3、如圖,已知⊙O的半徑為2,弦AB的長度為2,點(diǎn)C是⊙O上一動點(diǎn)若△ABC為等腰三角形,則BC2為_______.4、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.5、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點(diǎn)P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點(diǎn)D是CB邊上的動點(diǎn),連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.6、邊長為2的正三角形的外接圓的半徑等于___.7、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.三、解答題(7小題,每小題0分,共計(jì)0分)1、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機(jī)抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.2、在中,,,過點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時,①依題意補(bǔ)全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.3、如圖所示,是⊙的一條弦,,垂足為,交⊙于點(diǎn),點(diǎn)在⊙上.()若,求的度數(shù).()若,,求的長.4、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點(diǎn),足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長度.5、如圖,以四邊形的對角線為直徑作圓,圓心為,點(diǎn)、在上,過點(diǎn)作的延長線于點(diǎn),已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機(jī)選取一個報(bào)名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機(jī)從三個崗位中選取一個報(bào)名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.7、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.-參考答案-一、單選題1、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.2、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.3、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計(jì)算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點(diǎn)睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.4、C【分析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考??碱}型.5、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等?。还盛诓徽_③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點(diǎn)睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.6、B【分析】畫出圖形,作,交BE于點(diǎn)D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點(diǎn)即為C點(diǎn),為兩點(diǎn)不唯一,可判斷其不符合題意.【詳解】如圖,,,點(diǎn)C在射線上.作,交BE于點(diǎn)D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點(diǎn)C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點(diǎn)C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點(diǎn)C和即為使的外接圓的半徑等于4的點(diǎn).故③不符合題意.故選B.【點(diǎn)睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.7、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.8、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.二、填空題1、【分析】設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點(diǎn)C逆時針旋轉(zhuǎn)60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵M(jìn)F⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點(diǎn)睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關(guān)鍵是證明∠CDB=90°.2、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點(diǎn),,,,,.故答案為:.【點(diǎn)睛】本題考查的知識點(diǎn)是切線的性質(zhì)以及圓周角定理,掌握以上知識點(diǎn)是解此題的關(guān)鍵.3、4或12或【分析】分三種情況討論:當(dāng)AB=BC時、當(dāng)AB=AC時、當(dāng)AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時,BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、18.84【分析】先根據(jù)弧長公式求得πr,然后再運(yùn)用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點(diǎn)睛】本題主要考查了弧長公式、圓的周長公式等知識點(diǎn),牢記弧長公式是解答本題的關(guān)鍵.5、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.6、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計(jì)算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負(fù)值舍去).故答案為:.【點(diǎn)睛】本題考查了正多邊形和圓,解題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解.7、60【分析】根據(jù)弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點(diǎn)睛】本題考查了弧長公式,靈活應(yīng)用弧長公式是解題的關(guān)鍵.三、解答題1、【分析】用A、B、C、D分別表示化學(xué)、生物、地理、政治,然后畫出樹狀圖求解.【詳解】解:用A、B、C、D分別表示化學(xué)、生物、地理、政治,畫樹狀圖如下,,由樹狀圖可知,共有12種等可能發(fā)生的情況,其中符合條件的情況有2種,所以該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率=.【點(diǎn)睛】本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.2、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延長BA交CF延長線于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根據(jù)勾股定理,在Rt△ECF中,即.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理,掌握圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理是解題關(guān)鍵.3、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解;(2)利用垂徑定理可以得到,從而得到結(jié)論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點(diǎn)睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關(guān)鍵.4、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結(jié)論;(3)連,延長與相交于點(diǎn),由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關(guān)系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點(diǎn),由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運(yùn)用這些知識點(diǎn)是解題關(guān)鍵.5、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點(diǎn)F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點(diǎn)F,連接OF,∴OF⊥CD于點(diǎn)F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點(diǎn)睛】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,勾股定理,解決本題的關(guān)鍵是掌握切線的判定與性質(zhì).6、(1);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論