




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川內(nèi)江市第六中學7年級數(shù)學下冊第四章三角形定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°2、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°3、如圖,△ABC中,D,E分別為BC,AD的中點,若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.84、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,125、如圖,,,,則下列結論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④6、如圖,點C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點C為圓心,OD為半徑的弧B.以點C為圓心,DM為半徑的弧C.以點E為圓心,OD為半徑的弧D.以點E為圓心,DM為半徑的弧7、如圖,在中,已知點,,分別為,,的中點,且,則的面積是()A. B.1 C.5 D.8、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E9、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.710、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.2、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).3、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.4、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點,連結BE、CD交于點F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.5、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.6、如圖,已知,,,則______°.7、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm28、如圖,∠C=∠D=90°,AC=AD,請寫出一個正確的結論________.9、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.10、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.三、解答題(6小題,每小題10分,共計60分)1、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.2、如圖,四邊形中,,,于點.(1)如圖1,求證:;(2)如圖2,延長交的延長線于點,點在上,連接,且,求證:;(3)如圖3,在(2)的條件下,點在的延長線上,連接,交于點,連接,且,當,時,求的長.3、如圖,已知點A,C,D在同一直線上,BC與AF交于點E,AF=AC,AB=DF,AD=BC.(1)求證:∠ACE=∠EAC;(2)若∠B=50°,∠F=110°,求∠BCD的度數(shù).4、如圖,已知點E、C在線段BF上,,,.求證:ΔABC?ΔDEF.5、如圖,在中,、分別是上的高和中線,,,求的長.6、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.-參考答案-一、單選題1、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質,掌握全等三角形的判定定理與性質是解題的關鍵.2、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質,三角形外角的性質,解題的關鍵是熟練掌握三角形全等的性質,三角形外角的性質.3、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點睛】本題考查的是三角形的中線的性質,三角形一邊上的中線把原三角形分成的兩個三角形的面積相等.4、C【分析】根據(jù)三角形三邊關系定理:三角形兩邊之和大于第三邊,進行判定即可.【詳解】解:A、∵,∴不能構成三角形;B、∵,∴不能構成三角形;C、∵,∴能構成三角形;D、∵,∴不能構成三角形.故選:C.【點睛】本題主要考查運用三角形三邊關系判定三條線段能否構成三角形的情況,理解構成三角形的三邊關系是解題關鍵.5、B【分析】根據(jù)全等三角形的性質直接判定①②,則有,然后根據(jù)角的和差關系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯誤,④正確,綜上所述:正確的有①②④;故選B.【點睛】本題主要考查全等三角形的性質,熟練掌握全等三角形的性質是解題的關鍵.6、D【分析】根據(jù)作一個角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點E為圓心,DM為半徑的弧,故選:D.【點睛】本題主要考查作圖-尺規(guī)作圖,解題的關鍵是熟練掌握作一個角等于已知角的尺規(guī)作圖步驟.7、B【分析】根據(jù)三角形面積公式由點為的中點得到,同理得到,則,然后再由點為的中點得到.【詳解】解:點為的中點,,點為的中點,,,點為的中點,.故選:.【點睛】本題考查了三角形的中線與面積的關系,解題的關鍵是掌握是三角形的中線把三角形的面積平均分成兩半.8、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關鍵.9、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點睛】本題主要考查了全等三角形的判定和性質,熟練掌握全等三角形的判定方法是解題的關鍵.10、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質與判定,三角形外角的性質,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.二、填空題1、2或6或2【分析】設BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質,利用分類討論思想是解答此題的關鍵.2、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.3、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質等知識點,熟練掌握尺規(guī)作圖的方法是解題關鍵.4、96°96度【分析】根據(jù)題意由翻折的性質和全等三角形的對應角相等、三角形外角定理以及三角形內(nèi)角和定理進行分析解答.【詳解】解:設∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點睛】本題考查全等三角形的性質,解答本題的關鍵是利用“全等三角形的對應角相等”和“兩直線平行,內(nèi)錯角相等”進行推理.5、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關鍵.6、59【分析】如圖,過作證明證明再利用三角形的外角的性質求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質,平行公理的應用,三角形的外角的性質,過作再證明是解本題的關鍵.7、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.8、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點睛】此題考查全等三角形的判定和性質,關鍵是根據(jù)HL證明△ACB和△ADB全等解答.9、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.10、20【分析】利用平行線的性質求出∠1,再利用三角形外角的性質求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質,三角形外角的性質等知識,解題的關鍵是熟練掌握基本知識.三、解答題1、(1)見解析;(2)見解析【分析】(1)根據(jù)CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出結論;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出結論.【詳解】證明:(1)∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS);(2)∵△BED≌△CFD,∴DE=DF,∴BD+DF=CD+DE,∴BF=CE,在△ABF和△ACE中,,∴△ABF≌△ACE(AAS),∴AE=AF.【點睛】本題考查了垂直的性質的運用,全等三角形的判定與性質的運用,等式的性質的運用,解答時證明三角形全等是關鍵.2、(1)見解析;(2)見解析;(3)2【分析】(1)過點B作于點Q,根據(jù)AAS證明△得,再證明四邊形是矩形得BQ=CG,從而得出結論;(2)在GF上截取GH=GE,連接AH,證明AH=FH,GE=GH即可;(3)過點A作于點P,在FC上截取,連接,證明得,可證明AC是EH的垂直平分線,再證明和△得可求出,從而可得結論.【詳解】解:(1)證明:過點B作于點Q,如圖1∵又,∴△∴四邊形是矩形;(2)在GF上截取GH=GE,連接AH,如圖2,又(3)過點A作于點P,在FC上截取,連接,如圖3,由(1)、(2)知,,∵∴∵∴∴∴∠∵∴∠∴∵∴∠∴∴AC是EH的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濟寧市第十四中學2026屆中考物理全真模擬試題含解析
- 2025 醫(yī)學皮膚科兒童神經(jīng)纖維瘤病病例查房課件
- 生產(chǎn)調度月度工作匯報
- 年產(chǎn)xx萬副鏡框表面項目可研報告
- 2025-2030中國揮發(fā)性有機化合物行業(yè)盈利模式與投資戰(zhàn)略規(guī)劃分析報告
- 2025-2030中國投影機市場經(jīng)營模式及未來發(fā)展前景預測報告
- 2025年文化旅游節(jié)攤位租賃合同范本
- 二零二五版汽車掛靠責任免除合同模板
- 二零二五年度物流企業(yè)多人合伙創(chuàng)業(yè)合同
- 2025房地產(chǎn)租賃合同模板(含物業(yè)管理服務)
- 食堂食材配送項目投標書
- 《標書制作商務部分》課件
- 社區(qū)社會工作幻燈片課件
- 材料專業(yè)常用術語英語單詞表
- 2024北京西城初二(上)期末語文試卷及答案
- 酒店成本控制培訓課件
- 管廊鋼結構防火涂料施工方案
- 不竄貨保證書
- 建筑施工安全檢查標準JGJ59-2011
- DB34T 3663-2020 植保無人飛機農(nóng)田施藥作業(yè)技術規(guī)范
- 2025年全國計算機二級考試模擬考試題庫及答案(共290題)
評論
0/150
提交評論