




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Preface
TherapiddevelopmentofartificialintelligenceindustrydrivestheexplosivegrowthofvariousAIapplications.Asthecriticalinfrastructurebridgingendusersandcomputingresources,metropolitanareanetworks(MANs)arenowfacingtransformativerequirementsinnetworkarchitecture,functionalcapabilities,andserviceparadigms.
In2024,ChinaTelecompioneeredtheindustry-first‘computingservice-orientedmetropolitanareanetwork’conceptandreleasedthe‘computingservice-orientedmetropolitanareanetworkWhitepaper’,generatingsignificantindustry-wideattentionanddiscourse.Asacontinuation,thiswhitepaperprovidesin-depthanalysisofmetropolitanareanetworkevolutionintheAIera.Thiswhitepaperfirstanalyzesthedevelopmentlandscapeofartificialintelligencefromtheperspectivesofindustryadvancementandmacropolicies.Subsequently,itconductsanin-depthanalysisofAIapplicationrequirementstodefinetheessentialnetworkcapabilitiesthatmetropolitanareanetworksmustpossess.Thiswhitepaperthenexaminesthedesignobjectives,elaboratingontheoverallarchitectureandkeytechnologiesofmetropolitanareanetworksfortheAIera.Finally,itprovidestechnicalsolutionstailoredfortypicalscenarios.
Thefollowingorganizationsandprincipalmemberscontributedtothepreparationofthiswhitepaper:
lChinaTelecomResearchInstitute:YongqingZhu,ZehuaHu,XiaGong,ShizhangYuan
lZhongguancunUltraCrossConnectionNewInfrastructureIndustryInnovationAlliance:BoYuan
lHuaweiTechnologiesCo.Ltd.:HaobinZhao,JieDong,LiZhang
lZTECorporation:WenqiangTao,HaidongZhu,XiaoweiJi
Directory
CHAPTERIDevelopmentTrendsofArtificialIntelligence 1
1.1AIIndustryentersaphaseofacceleratedgrowth 2
1.2AIisfocalpointofglobalindustrialpolicies 4
1.3AItechnologyisdevelopingexplosively 5
1.4ChallengestoMANfromlarge-scaleAIcommercialization 9
CHAPTERIIAI-DrivenRequirementsforMAN 12
2.1AIapplicationsannovationaontinuestoaccelerate 13
2.2AIapplicationsexhibitdiversedeploymentmodels 15
2.3AIapplicationsimposenewrequirementsonMANs 17
2.4AIapplicationsdrivenMANstowardnext-generationevolution 24
CHAPTERIIIMANArchitecturefortheAIEra 25
3.1MANsdesignobjectives 26
3.2OverallMANarchitecture 28
3.3KeymodulesofMAN 30
CHAPTERIVMANKeyTechnologiesfortheAIEra 35
4.1Integratedcomputingandnetwork,convergedbearernetwork 36
4.2Elasticity,agility,flexibilityandefficiency 37
4.3Precisecontrolanddynamicconvergence 41
4.4IntelligentO&M,securityandreliability 45
CHAPTERVTypicalDeploymentScenarios 50
5.1Scenario1:TransmittingmassivesampledatatoAIDC 51
5.2Scenario2:Modeltrainingwithstorageandcomputedisaggregated 52
5.3Scenario3:CollaborativemodeltrainingacrossmultipleAIDCs 53
5.4Scenario4:Cloud-Edgecollaborativemodeltraining/inference 54
5.5Scenario5:Inferencedelivery 54
5.6Scenario6:Federatedlearning 55
5.7Scenario7:Multi-agentsystem/A2A 56
CHAPTERVIConclusionsandFuturePerspectives 58
1
ChapterI
DevelopmentTrendsofArtificialIntelligence
2
1.1AIIndustryentersaphaseofacceleratedgrowth
AsthecoredrivingforceleadingtheFourthIndustrialRevolution,theartificialintelligence(AI)industryisexperiencingunprecedentedrapiddevelopment,demonstratingenormousmarketpotential.AccordingtoGrandViewResearch,theglobalAImarketsizereached196.63billionin2023andisprojectedtoincreaseto1,811.75billionby2030,withacompoundannualgrowthrate(CAGR)of37.3%from2024to2030.InChina,researchreportsindicatethatthescaleoftheAIindustryisexpectedtoexpandfrom398.5billionyuanin2025to1,729.5billionyuanin2035,withanestimatedCAGRof15.6%.Artificialintelligencehasundoubtedlybecomeapowerfulengineforglobaleconomicgrowth.
Figure1-1:Globalartificialintelligentmarket
TheglobalAIindustrydemonstratesatrendfordevelopmentof‘dual-trackadvancementanddiversifiedflourishing’.Ontheonehand,globaltechnologygiantscontinuetointensifytheirAIinvestments:companieslikeGoogleandMicrosoftaredeepeningresearchanddevelopment(R&D)incoreAItechnologies;AmazonandApplepersistininnovatingintelligentcloudservicesandend-devicesmartapplications,whileChina'smajortechfirmssuchasBaidu,Alibaba,Tencent,andHuawei(BATH)arealsomakingrapidprogressinkeyareassuchasAIchipdevelopment,largeAImodelconstruction,computervision,andembodied
3
intelligence.Ontheotherhand,theexplosivebreakthroughsingenerativeAItechnologyhavespurredawaveofinnovativeenterprisesworldwide:OpenAIpioneeredthecommercializationofgenerativeAIwithChatGPT;AnthropicandCoherespecializeinvertical-orienteddevelopment;andin2025,China'sDeepSeeksignificantlyacceleratedthecommercialapplicationoflargeAImodelsininferencescenarios.NumerousemergingAIsupplychaincompanieshavebecomeinvestmenthotspots,collaboratingwithindustryleaderstoformasynergisticinnovationecosystem.Thisdynamicdevelopmentpatternthatfeaturescompetitionandsymbiosisamongdiverseplayersnotonlyacceleratesthecommercialdeploymentoflargelanguagemodelsinfinance,healthcare,andmanufacturing,butalsoprovidesrobustmomentumforthehigh-qualitydevelopmentofthedigitaleconomy.
BenefitingfromtherapiddevelopmentofAIindustry,AItechnologiesarebecomingpowerfulenginesforurbandevelopment,injectingunprecedentedvitalityintovarioussectorsofcities:Intransportationfield,leveragingtheprecisepredictivecapabilitiesoflargeAImodelsoptimizestrafficflowandenhancestravelefficiency.Inhealthcareindustry,AI-assisteddiagnostictechnologiesenabletherapidandaccurateanalysisofmedicalimages,helpingdoctorstoformulatetreatmentplans.Ineducation,customizedteachingcontentisprovidedbasedonstudents'learningprogressandcharacteristics,stimulatingtheirinterestandpotential.ThefinancialsectorutilizeslargeAImodelsforriskassessmentandinvestmentdecision-making,improvingtheprecisionandsecurityoffinancialservices.Furthermore,numerousfieldssuchasintelligentmanufacturing,intelligentgovernmentservices,andenvironmentalmonitoringhavebecomemoreefficient,intelligent,andsustainablethroughtheempowermentofAI.TheapplicationofAItechnologiesprovidesresidentswithmoreconvenient,comfortableandsecurelivingexperiences,leadingcitiestoanintelligentanddigitalfuture.
4
1.2AIisfocalpointofglobalindustrialpolicies
AIhasbecomeoneofthecoredrivingforcesforurbanandsocialdevelopment,formingaglobalconsensus:
lTheUnitedStateslaunchedthe‘WhiteHouseSmartCitiesInitiative’in2015,leveragingAI,bigdata,andtheInternetofThings(IoT)technologiestohelpcitiesaddresschallengessuchastrafficcongestion,energymanagement,andpublicsafety.By2025,itwouldfurtherstrengthenAIinfrastructurethroughthe‘StargateProgram’.
lTheEuropeanUnionproposedthe‘EuropeanDataUnionStrategy’in2025topromoteAIandbigdataapplicationsinhealthcare,education,andurbangovernance,supportedbythe‘DigitalEuropeProgramme’toimplementAIincriticalsocialandlivelihoodsectors.
lJapanintroducedthe‘SuperCity’vision,integratingAIandIoTtocreatedata-driven‘smartcities’.
lSingaporeimplementedits'NationalAIStrategy2.0',whichcombinestalentattraction,industrialapplications,R&Dinnovation,andinfrastructuretobuildanAIecosystemthatimprovespublicservicesandindustrialcompetitiveness.
lTheChinesegovernmentalsoprioritizesAI-drivenurbandevelopment.In2024,China’sNationalDataAdministrationissuedguidelinestodeepensmartcityinitiatives,encouragingAI-poweredsolutions,suchasintelligentanalysis,scheduling,regulationanddecisionmaking,tocomprehensivelyempowerurbandigitaltransformation.
NetworkshavebecomecriticalinfrastructuresupportingglobalAIindustrydevelopmentandarereceivinghighpriorityfromnationsworldwide:
lInChina,‘empoweringcomputingthroughnetworks’hasbeenestablishedasafundamentalprincipleforbuildingsmartcities.InOctober2023,China'sMinistryofIndustryandInformationTechnology(MIIT)introducedtheHigh-QualityDevelopmentActionPlanforComputingInfrastructure,whichaimstocreateagroupofcomputingpowernetworkcitybenchmarksinkeyregions.
5
lInJune2023,theSingaporegovernmentlauncheditsDigitalConnectivityBlueprint,proposingtheconstructionofseamlessend-to-end10GbpsdomesticconnectivitywithinfiveyearstoensureSingapore'sdigitalinfrastructureremainsworld-classandsetsthedirectionforitsdigitalfuture.
lInApril2024,SaudiArabia'sMinistryofCommunicationsreleasedtheSaudiArabia's10GbpsSocietyWhitePaper,becomingthefirstgloballytoproposeanend-to-endhigh-speed,high-qualityNet5.5Gnetworkarchitecturetosupportthecountry'sintelligenttransformation.
lIn2025,theEuropeanCommissionDigitalEuropeProgramme(DIGITAL)2025-2027alsoemphasizedtheneedtoenhancenetworkresilienceinvariousAIscenarios.
WiththewidespreadadoptionoflargeAImodelsandgrowingdemandforapplicationssuchasdistributedinference,theroleofnetworksinAIdevelopmentisbecomingincreasinglyprominent.Buildingasecond"informationsuperhighway"dedicatedtoAIhasemergedasaglobalpriority.
1.3AItechnologyisdevelopingexplosively
1.3.1AItechnologyisadvancingcomprehensively
ThedevelopmentofAItechnologydemonstratesnotabletrendsofdiversifiedcollaboration,high-efficiencyevolution,andmulti-ecosystemintegration:
lAtthehardwarelevel,thesignificantincreaseininferencescenarioshasdrivenrapidadvancementsindedicatedAIchipssuchasTPUsandLPUs,whilegeneral-purposeGPUs,combinedwithcutting-edgetechnologieslikechiplet,3Dstacking,andquantumcomputing,provideenhancedcapabilitiesforultra-large-scaleAImodeltraining.
lInstoragetechnology,protocolssuchasHBM3andCXLhaveachievedleapsinmemorybandwidthandcapacity,whilearchitecturessuchasstorage-computedisaggregationmeetthedemandforbuildingprivateknowledgebasesbasedonlargeAImodels.
6
lHigh-speedinterconnecttechnologiessuchasUEC,NVLink,UCIeandFalconbreakdowndatatransmissionbarriers,enablingefficientcollaborationbetweendistributedcomputingandheterogeneousarchitectures.
lOnthesoftwareecosystem,open-sourceframeworkssuchasPyTorchandTensorFlowaredeeplyintegratingwithautomatedtoolchains,combinedwithcloud-edge-deviceunifieddeployment,toachieveend-to-endoptimizationfrom
trainingtoinference.
lInaddition,greencomputingtechnologies,includingliquidcoolinganddynamicpowermanagement,contributetothesustainabledevelopmentofAI.
1.3.2LargeAImodeltechnologyentersrapiddevelopment
phase
LargeAImodelshavebecomeoneofthemostwidelyappliedkeyAItechnologiestoday.FromthelaunchofChatGPTin2022totheriseofDeepSeekin2025,thefieldoflargeAImodelshasexperiencedexplosivegrowth.Thedevelopmentoflargemodelsexhibitsmulti-dimensionaltrends:ononehand,modelscalecontinuestoexpandwithincreasingparametercounts,enablingthecaptureofmorecomplexpatternsandrelationshipstoenhanceperformanceacrossvarioustasks;ontheotherhand,multi-modalfusionhasbecomeanimportantdevelopmentdirection,aslargemodelscombinetext,image,speechandothermulti-modaldatatoachievemorecomprehensiveunderstandingandgenerationofinformation,expandingtheirapplicationscenarios.Additionally,greaterattentionisbeingpaidtomodelsafety,reliabilityandinterpretability,withresearcherscommittedtodevelopingmorerobustmodelarchitecturesandtrainingmethodstoensurestableoperationandtrustworthyapplicationoflargeAImodelsincomplexenvironments.ThesetrendscollectivelydrivethecontinuousadvancementoflargeAImodeltechnology,layingasolidfoundationforthewidespreadapplicationofAI.Currently,largeAImodelsareevolvinginthefollowingtechnicaldirections:
Direction1:AstheparametersandtrainingdatascaleoflargeAImodelscontinue
7
toincrease,thedemandforcomputingpowerisalsogrowingrapidly.Single1K+GPUsor10K+GPUsAIDataCenters(AIDC)canhardlymeettherequirementsofultra-large-scaletraining.TakingLlama3.1releasedin2024asanexample,itslargestmodelhas405Bparametersandrequiresapproximately15trillionTokensforpre-training,withtheentiretrainingprocessdemanding39.3millionGPU/hours(H100)ofcomputingpower.Therefore,adoptingdistributedtrainingmethodsandutilizinghigh-performancenetworkstoenhancethecollaborativetrainingefficiencyacrossmultipleAIDCshasbecomeanecessityforAIdevelopment.Currently,multipleoperatorshavecompletedthecommercialdeploymentofdistributedtraining,achievingthedistributedtrainingfor10K+GPUs,100BparameterslargeAImodelsacrossAIDCsoverdistances100+kilometers.Amongthem,ChinaTelecomandHuaweijointlydeployedthedistributedtrainingservicesupporting120KMwide-areaRDMAlosslesstransmission,withtrainingefficiencyreachingover95%.
Direction2:SoftwareengineeringoptimizationhasbecomethekeypathwaytobreakthroughAIhardwarebottlenecks,drivinglargeAImodelstowardcost-effectivedevelopment,andacceleratingtheadoptionofAIacrossindustries.Theopen-sourceDeepSeek-V3in2025completedpre-traininginjusttwomonthsusingonly2,048GPUsthroughalgorithmicoptimization,whiletheDeepSeek-R1modelfurthercompressedthetrainingcycleto2-3weeks.This‘low-cost&open-source’solutionsignificantlyloweredthetechnicalthresholdforlargeAImodels,directlyleadingtotwonotablechanges:First,therelativelylowusagecoststriggeredexplosivegrowthinlargeAImodel-basedapplications,resultinginsurgingAItrafficwithincitiesthatrequiresnetworktoensureefficientAItrafficsteer;Second,throughfull-stacksoftwareengineeringoptimizationspanning‘a(chǎn)lgorithm&hardware&system’,AIinferencelatencywasreducedbyover60%,drivingexponentialgrowthinAIinferencedemand.
Direction3:Theintelligentinteractionofmulti-edgeagentsreflectsAItechnology'stransformationfromcentralizedtodistributedsystemsandfrom
8
singleintelligencetocollectiveintelligence,drivingbreakthroughsinreal-timeperformance,autonomy,andcollaborationofAI.LargeAImodelscanachievelightweightdeploymentthroughtechniqueslikemodeldistillation,makingthemcompatiblewithresource-constrainedscenariossuchasconsumer-gradeGPUs,mobiledevices,andIoTequipment,therebypromotingthedevelopmentofedge-basedsmallintelligentdevices.Atthesoftwarelevel,thewidespreadadoptionofMulti-Agenttechnologyenablesmultipleterminalstocollaborativelycompletecomplextasks,furtheradvancinglarge-scaleinteractiveapplicationsofedgeagents.Google'sintroductionoftheA2AandMCPprotocolsforagentinteractionin2025signalsAI'simpendingtransitionfromthe‘cloudcomputing’architectureofB2B,B2C,andC2Ctothe‘granularcomputing’architectureofA2A,M2M,andX2X,withthefrequentinteractionsbetweenintelligentcomputingparticlesplacehigherdemandsonthereliability,andbandwidthcapacityofnetwork.
Direction4:InSeptember2024,OpenAIlaunchedtheo1modelwithChain-of-Thought(CoT)mechanism,whichachieveshigheraccuracybyextendingthinkingtimeduringinference,markingaparadigmshiftfrompursuingresponsespeedtoemphasizingdeepreasoning.Thistransformationhasdriventheshiftofcomputingpowerdemandfrompre-trainingtoinference,breakingthroughthelimitationsofScalingLaw:whilepre-trainingrelieson10K+GPUsScaling-upclusters,inferencecanbeimplementedthroughScaling-outarchitecturescomposedofasmallnumberofGPUs,promotingtheevolutionofAIinfrastructuretowarddistributedandflexiblyscheduledsystems.Additionally,thesignificantlyincreaseddeploymentdemandsonAIinferencehaveraisedrequirementsforlarge-scaleinferenceperformanceimprovements.Network-baseddistributedinferencehasbecomeakeydirectionforfutureurbanAIapplications,necessitatingnetworkstosupportdistributedAIinferencedeployment.Inresponse,NVIDIAintroducedtheDynamoframework,adoptingaPD-separatedarchitecturetooptimizeresourceschedulingandcomputingefficiencyinlarge-scaleAIinference.
9
1.4ChallengestoMANfromlarge-scaleAIcommercialization
BuildingacomprehensiveAIurbanecosystemhasbecomethecorepathwayforupgradingurbansystemstoadvancedintelligence.Inthisprocess,theconceptof‘CityasaComputer’hasgraduallygainedglobalconsensus:bydeeplyintegratingcomputingpower,storage,andterminalsthroughmetropolitanareanetworks(MANs),citiesaretransformedintodistributedultra-large-scalecomputingsystems,enablingcitywideintelligentmanagementthroughmillisecond-leveldataflowandreal-timedecision-making.Existingbroadbandnetworks,mobilenetworks,dedicatedgovernmentandenterprisenetworks,andcloudnetworkswithincitiesconnectedvarioususers.However,traditionalMANsstruggletomeettherequirementsforcarryingurbanAIservices,whetherintermsofnetworkarchitectureorcoretechnologies.
1.4.1Challengesindatacirculation
ThetrainingoflargeAImodelsandtheconstructionofknowledgebasestypicallyrequiredatavolumesattheTB/PBscale,whichimposeshigherthroughputrequirementsondatatransmissionnetworks.Simultaneously,thecomputingtrafficoflargemodelsexhibitssignificantelasticcharacteristics,demandingextremelyhighnetworkreliability.Substandardandnon-deterministicnetworksmayresultininsufficientdatatransmissionbandwidth,excessivelatency,orfrequentpacketloss,therebycompromisingtheavailabilityofcomputingresources.Furthermore,versioniterationsoflargemodelsandknowledgebaseupgradesinAIsystemsalsodependonstablenetworksupport.Poornetworkqualitycanconstraintheimplementationofthesefunctions,ultimatelyreducingtheoveralloperationalefficiencyofAIinfrastructure.
Therapiddevelopmentoflarge-scaleinferenceapplicationsandA2AcomputingparadigmshasintroducednewchallengestourbanAIdatacirculation:ononehand,
10
MANsneedtomeettheefficientdatacommunicationandinteractionrequirementsbetweendistributedinferencenodes;ontheotherhand,theA2Amodehasledtoexponentialgrowthinhigh-frequencyinteractiontrafficacrossintelligentagents,whichnotonlysignificantlyincreasesthebandwidthrequirementsofedgenetworksbutalsorequiresMANstoensurethereliabilityofinformationinteractionbetweenintelligentagents.Therefore,torealizethevisionof‘CityasaComputer’,itisurgenttobuildanewultra-interconnectednetworkdifferentfromtraditionalMANstomeetthetransmissionrequirementsofAIcomputingdataflowsandenableMANstoeffectivelysupportefficientcomputationaldatacirculation.
1.4.2ChallengesinO&M
WhenMANscarryAIservices,networkmanagementandmaintenance(O&M)facegreaterchallenges.Fromservicemodelperspective,AIhastransformednetworktrafficpatterns:largeAImodeltrainingcancausesuddentrafficsurges,whilefrequentinteractionsbetweenintelligentagentsalsogenerateburstycommunication,requiringnetworkstopossesspredictiveplanningandmaintenancecapabilities.AIservicesalsodemandhighernetworkreliability,evenminorfaultsduringmodeltrainingmayleadtocompletetaskresets.Whenlarge-scaleinferenceservicesreplacemanualservicesincities,networksmustensureserviceexperience.
Consequently,traditionalmanagementmodelsthatrelyonmanualinterventionandrouteconvergencetoensurebasicnetworkavailabilitycannolongermeettheperformancedemandsofAIservices.AIservicesrequirehigherfaultself-healingratesandlowerlatencyinnetworkoptimizationdecisions,pushingnetworkoperationstowardhighautonomytofulfillneedslikepredictivemaintenance,serviceawareness,andelasticoptimization.Thequestionofhowtoequipnetworkswithhighlyintelligentmanagementandoperationalcapabilities,namelyautomatingtheadjustmentofnetworkresourcesandconfigurationsbasedontheintentionsandstatesofcomputingservices,hasbecomeakeyfocusforAI-orientedMANs.
11
1.4.3Challengesinsecurityandtrustworthiness
Withtherapidadoptionoflargemodels,vastamountsofurbandataarebeingutilizedforanalysis,computation,andprocessing.Datafromenterprises,households,andindividualsconstituteprivatedomaintraffic,posingsignificantsecurityrisks:Forhouseholdsandindividuals,privatedomaintrafficinvolvessensitivedatasuchaspersonalinformationandconsumptionbehaviors,whereleakscouldleadtoprivacyviolations;forenterprises,privatedomaintrafficencompassesR&Ddata,productiondata,andoperationaldata,wherebreachescouldunderminecompetitivenessoreventriggerlegaldisputes.Sincedatatransmissionfacespotentialthreatssuchastheft,tampering,andloss,MANsmusthaverobustdataprotectioncapabilitiestoensuredataconfidentiality,integrity,andavailability.
TraditionalAAA(Authentication,AuthorizationandAccounting)systemsanddataencryptiontechnologiesbasedontrafficflowsstruggletomeetthesecurityandtrustrequirementsofAIscenarios.However,emergingtechnologieslikeblockchainandquantumencryptionofferinnovativesolutionsfortrustworthydatacirculation:blockchainprovidesimmutable,end-to-endtraceabletrustmechanismsforAIdataflowsthroughdistributedledgersandsmartcontracts;quantumencryptionleveragesbreakthroughslikequantumkeydistributiontofundamentallyenhanceanti-eavesdroppingcapabilitiesfordatatransmission.MANsmustintegratetheseinnovativemechanismstoestablishatrustedfoundationforlarge-scaleurbanAIdeployment,providingcriticalinfrastructuresupportforthewidespreadimplementationofmetropolitanAIservices.
12
ChapterII
AI-DrivenRequirements
forMAN
13
2.1AIapplicationsannovationaontinuestoaccelerate
Inearly2025,DeepSeekspearheadedatransformativewaveingenerativeAI,drivenbyitsexceptionalperformanceandindustry-leadingcostefficiencyinLLMtrainingandinference,acceleratingthecommercializationofAItechnologies.Today,AIapplicationshaveenteredthestageofscaleddeployment,servingdiversescenariosacrosshome(toH),consumer(toC),andbusiness(toB),withpenetrationintomultipleverticalindustriesincludingmedia,legalservices,education,andmanufacturing.
2.1.1AItoHscenarios
AIsignificantlyenhancestheprofessionalism,interactivity,andpersonalizationofhomeservices,enrichinghomescenarios.Currently,theindustryisgraduallyreachingaconsensusonbuildinganintegratedsmarthomeecosystemthatcombinesconnectivity,computingpower,andintelligence.Throughcloud-network-edge-devicecollaboration,providingbroadbanduserswithansmartcloudservices,supportingvariousAItoHscenariosincludingsmarthomeandhomeassistants:
lSmarthome:SmartTV,smartrefrigeratorsandothersmarthomeproducts,
utilizingAItechnologieslikevoicerecognitionandcomputervision,nowsupport
intelligentcapabilitiesincludingnaturallanguageinteraction,userhabitlearning
andcontextualadaptation.Thesesmarthomeproductscandynamicallyadjust
lighting,temperatureandhumiditybasedonuserpreferences,whileemploying
facialrecognitionandbehavioranalysistechnologiestoenhancehomesecurity.
lHomeassistants:Smarthomeassistantproducts,includingsmartspeakersanddomesticrobots,employnaturallanguageprocessingandotherAItechnologiestoenable
harmonious
human-machinedialogue.Theseproductsachievepreciseintentunderstandingtoexecutetasksincludingscheduleremindersandinformationretrieval,whileenablingcontextualizedservicessuchasappliancecontrolandsecuritymonitoringthroughseamlessIoTinteroperability.
14
2.1.2AItoCscenarios
AIrevolutionizestheinteractionsbetweenconsumerandservice,drivingenhanceduserexperiencesandfosteringmarketinnovation.TheAIinnovationlandscapeiswitnessingrapidproliferationofvariousverticalapplications.MajorindustryplayersareactivelydeployingAItoCsolutionsacrosssmartterminals,personalizedservices,anddigitallifestyledomains,leveragingmetropolitanAIservicestoenhanceuserexperienceandretention.ThecurrentAItoCapplicationsprimarilyencompassthefollowingcategories:
lProductivityEnhancement:AIapplicationssuchasintelligentsearch,automatedsummarization,contentgeneration,andcodeassistancehavesignificantlyimprovedefficiencyforbothindividualsandorganizations.Theseapplicationsstreamlinecomplexworkflows,enablinguserstofocusonhigher-valuestrategicinitiativeswhilefosteringinnovationandcompetitiveadvantage.
lCreativeGeneration:AIapplicationsincludingdesignautomati
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年下半年國(guó)家電網(wǎng)公司華北分部高校畢業(yè)生招聘【10人】易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年下半年四川邛崍市招考事業(yè)單位工作人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年下半年四川自貢富順縣琵琶鎮(zhèn)人民政府招錄村級(jí)動(dòng)物防疫員12人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 2025年下半年四川眉山東坡區(qū)鄉(xiāng)鎮(zhèn)事業(yè)單位從服務(wù)基層項(xiàng)目人員中招聘1人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 2025年下半年四川省眉山市屬事業(yè)單位招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年下半年四川省成都市經(jīng)濟(jì)和信息化局所屬成都市無(wú)線電監(jiān)測(cè)站招聘1人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年下半年四川省涼山木里縣衛(wèi)生健康局考試招聘醫(yī)務(wù)工作人員10人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 2025年下半年四川省事業(yè)單位聯(lián)考招聘重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 2025年下半年四川瀘州市生態(tài)環(huán)境局下屬事業(yè)單位占編聘用易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年下半年四川宜賓市青年志愿者協(xié)會(huì)招聘1人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 心理輔導(dǎo)師培訓(xùn)情緒管理
- 水電工安全知識(shí)培訓(xùn)課件
- 2025 SMETA員工公平職業(yè)發(fā)展管理程序-SEDEX驗(yàn)廠專(zhuān)用文件(可編輯)
- 衛(wèi)生法律法規(guī)試題題庫(kù)(附答案)
- A1技術(shù)環(huán)境下教學(xué)數(shù)據(jù)分析方案
- OJT基礎(chǔ)知識(shí)培訓(xùn)課件
- 2025年質(zhì)量管理體系內(nèi)審員培訓(xùn)考試卷及答案
- 產(chǎn)褥期間質(zhì)性乳腺炎的護(hù)理查房
- 危險(xiǎn)品航空運(yùn)輸知識(shí)考核試題及答案
- 油田專(zhuān)家管理辦法
- 2025年秋招:農(nóng)行筆試題庫(kù)及答案(可下載)
評(píng)論
0/150
提交評(píng)論