2024-2025學年山東省煙臺市龍口市九上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第1頁
2024-2025學年山東省煙臺市龍口市九上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第2頁
2024-2025學年山東省煙臺市龍口市九上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第3頁
2024-2025學年山東省煙臺市龍口市九上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第4頁
2024-2025學年山東省煙臺市龍口市九上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在中,,,,則等于()A. B. C. D.2.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.3.已知點是線段的一個黃金分割點,則的值為()A. B. C. D.4.某同學推鉛球,鉛球出手高度是m,出手后鉛球運行高度y(m)與水平距離x(m)之間的函數(shù)表達式為,則該同學推鉛球的成績?yōu)椋ǎ〢.9m B.10m C.11m D.12m5.若關于x的方程kx2﹣2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣16.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.7.若二次函數(shù)的圖象的頂點在第一象限,且經(jīng)過點(0,1)和(-1,0),則的值的變化范圍是()A. B. C. D.8.下列圖形,既是軸對稱圖形又是中心對稱圖形的是()A.正三角形 B.正五邊形 C.等腰直角三角形 D.矩形9.如圖,⊙O的半徑為5,將長為8的線段PQ的兩端放在圓周上同時滑動,如果點P從點A出發(fā)按逆時針方向滑動一周回到點A,在這個過程中,線段PQ掃過區(qū)域的面積為()A.9π B.16π C.25π D.64π10.遵義市脫貧攻堅工作中農(nóng)村危房改造惠及百萬余人,2008年以來全市累計實施農(nóng)村危房改造40.37萬戶,其中的數(shù)據(jù)40.37萬用科學記數(shù)法表示為()A. B. C. D.11.若三角形的兩邊長分別是4和6,第三邊的長是方程x2-5x+6=0的一個根,則這個三角形的周長是()A.13 B.16 C.12或13 D.11或1612.若反比例函數(shù)y=的圖象經(jīng)過點(2,3),則它的圖象也一定經(jīng)過的點是()A. B. C. D.二、填空題(每題4分,共24分)13.已知關于x的一元二次方程ax2+bx+5a=0有兩個正的相等的實數(shù)根,則這兩個相等實數(shù)根的和為_____.14.如圖,與關于點成中心對稱,若,則______.15.已知2是關于x方程x2-2a=0的一個解,則2a-1的值是______________.16.一次測試,包括甲同學在內的6名同學的平均分為70分,其中甲同學考了45分,則除甲以外的5名同學的平均分為_____分.17.如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB、標桿CD和EF在同一豎直平面內,從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,則建筑物的高是__________米.18.如圖,斜坡長為100米,坡角,現(xiàn)因“改小坡度”工程的需要,將斜坡改造成坡度的斜坡(、、三點在地面的同一條垂線上),那么由點到點下降了_________米(結果保留根號)三、解答題(共78分)19.(8分)京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).20.(8分)如圖,AB∥CD,AC與BD交于點E,且AB=6,AE=4,AC=1.(1)求CD的長;(2)求證:△ABE∽△ACB.21.(8分)如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標為,其對稱軸交軸于點.(1)求拋物線的解析式;(2)如圖2,點為拋物線上位于第一象限內且在對稱軸右側的一個動點,求使面積最大時點的坐標;(3)在對稱軸上是否存在點,使得點關于直線的對稱點滿足以點、、、為頂點的四邊形為菱形.若存在,請求出點的坐標;若不存在,請說明理由.22.(10分)拋物線的對稱軸為直線,該拋物線與軸的兩個交點分別為和,與軸的交點為,其中.(1)寫出點的坐標________;(2)若拋物線上存在一點,使得的面積是的面積的倍,求點的坐標;(3)點是線段上一點,過點作軸的垂線交拋物線于點,求線段長度的最大值.23.(10分)為弘揚遵義紅色文化,傳承紅色文化精神,某校準備組織學生開展研學活動.經(jīng)了解,有A.遵義會議會址、B.茍壩會議會址、C.婁山關紅軍戰(zhàn)斗遺址、D.四渡赤水紀念館共四個可選擇的研學基地.現(xiàn)隨機抽取部分學生對基地的選擇進行調查,每人必須且只能選擇一個基地.根據(jù)調查結果繪制如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.(1)統(tǒng)計圖中______,______;(2)若該校有1500名學生,請估計選擇基地的學生人數(shù);(3)某班在選擇基地的6名學生中有4名男同學和2名女同學,需從中隨機選出2名同學擔任“小導游”,請用樹狀圖或列舉法求這2名同學恰好是一男一女的概率.24.(10分)某服裝店用1440元購進一批服裝,并以每件46元的價格全部售完.由于服裝暢銷,服裝店又用3240元,再次以比第一次進價多4元的價格購進服裝,數(shù)量是第一次購進服裝的2倍,仍以每件46元的價格出售.(1)該服裝店第一次購買了此種服裝多少件?(2)兩次出售服裝共盈利多少元?25.(12分)某校綜合實踐小組要對一幢建筑物的高度進行測量.如圖,該小組在一斜坡坡腳處測得該建筑物頂端的仰角為,沿斜坡向上走到達處,(即)測得該建筑物頂端的仰角為.已知斜坡的坡度,請你計算建筑物的高度(即的長,結果保留根號).26.如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F(1)求證:△ABE∽△DEF;(2)求EF的長.

參考答案一、選擇題(每題4分,共48分)1、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點睛:本題主要考查銳角三角函數(shù)的定義,解題的關鍵是掌握勾股定理及正弦函數(shù)的定義.2、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關鍵.3、A【解析】試題分析:根據(jù)題意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故選B.考點:黃金分割點評:本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點;其中AC=AB≈0.618AB,并且線段AB的黃金分割點有兩個.4、B【分析】根據(jù)鉛球出手高度是m,可得點(0,)在拋物線上,代入解析式得a=-,從而求得解析式,當y=0時解一元二次方程求得x的值即可;【詳解】解:∵鉛球出手高度是m,∴拋物線經(jīng)過點(0,),代入解析式得:=16a+3,解得a=-,故解析式為:令y=0,得:,解得:x1=-2(舍去),x2=10,

則鉛球推出的距離為10m.故選:B.本題考查二次函數(shù)的實際應用,熟練掌握待定系數(shù)法求函數(shù)解析式是解題關鍵.5、C【分析】根據(jù)根的判別式()即可求出答案.【詳解】由題意可知:∴∵∴且,故選:C.本題考查了根的判別式的應用,因為存在實數(shù)根,所以根的判別式成立,以此求出實數(shù)k的取值范圍.6、A【分析】根據(jù)三角形的內角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.本題考查了直角三角形性質、等腰三角形的性質和判定,三角形的內角和定理以及相似三角形的判定與性質等知識,關鍵是推出∠CEF=∠CFE.7、A【分析】代入兩點的坐標可得,,所以,由拋物線的頂點在第一象限可得且,可得,再根據(jù)、,可得S的變化范圍.【詳解】將點(0,1)代入中可得將點(-1,0)代入中可得∴∵二次函數(shù)圖象的頂點在第一象限∴對稱軸且∴∵,∴∴故答案為:A.本題考查了二次函數(shù)的系數(shù)問題,掌握二次函數(shù)的性質以及各系數(shù)間的關系是解題的關鍵.8、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念逐一進行分析判斷即可得.【詳解】A.正三角形是軸對稱圖形,不是中心對稱圖形;B.正五邊形是軸對稱圖形,不是中心對稱圖形;C.等腰直角三角形是軸對稱圖形,不是中心對稱圖形;D.矩形是軸對稱圖形,也是中心對稱圖形,故選D.本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、B【分析】如圖,線段PQ掃過的面積是圖中圓環(huán)面積.作OE⊥PQ于E,連接OQ求出OE即可解決問題.【詳解】解:如圖,線段PQ掃過的面積是圖中圓環(huán)面積,作OE⊥PQ于E,連接OQ.∵OE⊥PQ,∴EQ=PQ=4,∵OQ=5,∴OE=,∴線段PQ掃過區(qū)域的面積=π?52﹣π?32=16π,故選:B.本題主要考查了軌跡,解直角三角形,垂徑定理,解題的關鍵是理解題意,學會添加常用輔助線.10、B【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:根據(jù)科學記數(shù)法的定義:40.37萬=故選:B.此題考查的是科學記數(shù)法,掌握科學記數(shù)法的定義是解決此題的關鍵.11、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的兩個根,又由三角形的兩邊長分別是4和6,利用三角形的三邊關系,即可確定這個三角形的第三邊長,然后求得周長即可.【詳解】∵x2-5x+6=0,

∴(x-3)(x-2)=0,

解得:x1=3,x2=2,

∵三角形的兩邊長分別是4和6,

當x=3時,3+4>6,能組成三角形;

當x=2時,2+4=6,不能組成三角形.

∴這個三角形的第三邊長是3,

∴這個三角形的周長為:4+6+3=13.

故選A.此題考查了因式分解法解一元二次方程與三角形三邊關系的知識.此題難度不大,解題的關鍵是注意準確應用因式分解法解一元二次方程,注意分類討論思想的應用.12、A【詳解】解:根據(jù)題意得k=2×3=6,所以反比例函數(shù)解析式為y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴點(﹣3,﹣2)在反比例函數(shù)y=的圖象上.故選A.本題考查反比例函數(shù)圖象上點的坐標特征.二、填空題(每題4分,共24分)13、2【分析】根據(jù)根的判別式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根據(jù)韋達定理:即可.【詳解】當關于x的一元二次方程ax2+bx+5a=0有兩個正的相等的實數(shù)根時,,即,解得b=﹣2a或b=2a(舍去),原方程可化為ax2﹣2ax+5a=0,則這兩個相等實數(shù)根的和為.故答案為:2.本題考查一元二次方程根的判別式和韋達定理,解題的關鍵是熟練掌握根的判別式和韋達定理。14、【分析】由題意根據(jù)中心對稱的定義可得AB=DE,從而即可求值.【詳解】解:與△DEC關于點成中心對稱,.本題主要考查了中心對稱的定義,解題的關鍵是熟記中心對稱的定義即把一個圖形繞著某個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.15、5.【分析】把x=2代入已知方程可以求得2a=6,然后將其整體代入所求的代數(shù)式進行解答.【詳解】解:∵x=2是關于x的方程x2-2a=0的一個解,∴×22-2a=0,即6-2a=0,則2a=6,∴2a-1=6-1=5.故答案為5..本題考查了一元二次方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.16、1.【分析】求出6名學生的總分后,再求出除甲同學之外的5人的總分,進而求出平均分即可.【詳解】(70×6﹣45)÷(6﹣1)=1分,故答案為:1.此題考查平均數(shù)的計算,掌握公式即可正確解答.17、54【解析】設建筑物的高為x米,根據(jù)題意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.18、【分析】根據(jù)直角三角形的性質求出AC,根據(jù)余弦的定義求出BC,根據(jù)坡度的概念求出CD,結合圖形計算,得到答案.【詳解】在Rt△ABC中,∠ABC=30°,

∴AC=AB=50,BC=AB?cos∠ABC=50,

∵斜坡BD的坡度i=1:5,

∴DC:BC=1:5,

∴DC=10,

則AD=50-10,

故答案為:50-10.此題考查解直角三角形的應用-坡度坡角問題,掌握坡度是坡面的鉛直高度h和水平寬度l的比是解題的關鍵.三、解答題(共78分)19、該段運河的河寬為.【分析】過D作DE⊥AB,可得四邊形CHED為矩形,由矩形的對邊相等得到兩對對邊相等,分別在直角三角形ACH與直角三角形BDE中,設CH=DE=xm,利用銳角三角函數(shù)定義表示出AH與BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到結果.【詳解】解:過作,可得四邊形為矩形,,設,在中,,,在中,,,由,得到,解得:,即,則該段運河的河寬為.考查了解直角三角形的應用,熟練掌握銳角三角函數(shù)定義是解本題的關鍵.20、(1);(2)見解析【分析】(1)由線段的和差關系可求出CE的長,由AB//CD可證明△CDE∽△ABE,根據(jù)相似三角形的性質即可求出CD的長;(2)根據(jù)AB、AE、AC的長可得,由∠A為公共角,根據(jù)兩組對應邊成比例,且對應的夾角相等即可證明△ABE∽△ACB.【詳解】(1)∵AE=4,AC=1∴CE=AC-AE=1-4=5∵AB∥CD,∴△CDE∽△ABE,∴,∴.(2)∵,∴∵∠A=∠A,∴△ABE∽△ACB本題考查相似三角形的判定與性質,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.21、(1);(2);(3)點的坐標為或【分析】(1)設出拋物線的頂點式,將頂點C的坐標和原點坐標代入即可;(2)先求出點A的坐標,再利用待定系數(shù)法求出AC的解析式,過點作軸交于點,設,則,然后利用“鉛垂高,水平寬”即可求出面積與m的關系式,利用二次函數(shù)求最值,即可求出此時點D的坐標;(3)先證出為等邊三角形,然后根據(jù)P點的位置和菱形的頂點順序分類討論:①當點與點重合時,易證:四邊形是菱形,即可求出此時點P的坐標;②作點關于軸的對稱點,當點與點重合時,易證:四邊形是菱形,先求出,再根據(jù)銳角三角函數(shù)即可求出BP,從而求出此時點P的坐標.【詳解】(1)解:設拋物線解析式為,∵頂點∴又∵圖象過原點∴解出:∴即(2)令,即,解出:或∴設直線AC的解析式為y=kx+b將點,的坐標代入,可得解得:∴過點作軸交于點,設,則∴∴∴當時,有最大值當時,∴(3)∵,,∴∴∴為等邊三角形①當點與點重合時,∴四邊形是菱形∴②作點關于軸的對稱點,當點與點重合時,∴四邊形是菱形∴點是的角平分線與對稱軸的交點,∴,∵,.在Rt△OBP中,∴綜上所述,點的坐標為或此題考查的是二次函數(shù)與圖形的綜合大題,掌握用待定系數(shù)法求二次函數(shù)的解析式、利用“鉛垂高,水平寬”求面積的最值、菱形的判定定理和分類討論是數(shù)學思想是解決此題的關鍵.22、(1);(2)點的坐標為或;(3)MD長度的最大值為.【分析】(1)拋物線的對稱軸為x=1,點A坐標為(-1,0),則點B(3,0),即可求解;

(2)由S△POC=2S△BOC,則x=±2OB=6,即可求解;

(3)設:點M坐標為(x,x-3),則點D坐標為(x,x2-2x-3),則MD=x-3-x2+2x+3,即可求解.【詳解】解:(1)拋物線的對稱軸為,點坐標為,則點,故:答案為;(2)二次函數(shù)表達式為:,即:,解得:,故拋物線的表達式為:,所以由題意得:,設P(x,)則所以則,所以當時,=-21,當時,=45故點的坐標為或;(3)如圖所示,將點坐標代入一次函數(shù)得表達式得,解得:,故直線的表達式為:,設:點坐標為,則點坐標為,則,故MN長度的最大值為.主要考查了二次函數(shù)的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數(shù)形結合的思想把代數(shù)和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.23、(1)56,15;(2)555;(3)【分析】(1)根據(jù)C基地的調查人數(shù)和所在的百分比即可求出調查總人數(shù),再乘調查A基地人數(shù)所占的百分比即可求出m,用調查D基地的人數(shù)除以調查總人數(shù)即可求出n;(2)先求出調查B基地人數(shù)所占的百分比,再乘1500即可;(3)根據(jù)題意,列出表格,然后利用概率公式求概率即可.【詳解】(1)調查總人數(shù)為:40÷20%=200(人)則m=200×28%=56(人)n%=30÷200×100%=15%∴n=15.故答案為:56;15(2)(人)答:選擇基地的學生人數(shù)為555人.(3)根據(jù)題意列表如下:男1男2男3男4女1女2男1(男1,男2)(男1,男3)(男1,男4)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,男4)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,男4)(男3,女1)(男3,女2)男4(男4,男1)(男4,男2)(男4,男3)(男4,女1)(男4,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,男4)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,男4)(女2,女1)由上表可知,共有30種等可能的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論