2025屆文山市重點中學數(shù)學九年級第一學期期末達標檢測模擬試題含解析_第1頁
2025屆文山市重點中學數(shù)學九年級第一學期期末達標檢測模擬試題含解析_第2頁
2025屆文山市重點中學數(shù)學九年級第一學期期末達標檢測模擬試題含解析_第3頁
2025屆文山市重點中學數(shù)學九年級第一學期期末達標檢測模擬試題含解析_第4頁
2025屆文山市重點中學數(shù)學九年級第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠ABD的度數(shù)為()A.60° B.72° C.78° D.144°2.對于不為零的兩個實數(shù)a,b,如果規(guī)定a★b,那么函數(shù)的圖象大致是()A. B. C. D.3.在下列命題中,真命題是()A.相等的角是對頂角 B.同位角相等C.三角形的外角和是 D.角平分線上的點到角的兩邊相等4.在1、2、3三個數(shù)中任取兩個,組成一個兩位數(shù),則組成的兩位數(shù)是奇數(shù)的概率為()A. B. C. D.5.拋物線的頂點坐標是()A.(3,5) B.(-3,-5) C.(-3,5) D.(3,-5)6.下列對二次函數(shù)y=x2﹣x的圖象的描述,正確的是()A.開口向下 B.對稱軸是y軸C.經(jīng)過原點 D.在對稱軸右側部分是下降的7.已知點P的坐標為(3,-5),則點P關于原點的對稱點的坐標可表示為()A.(3,5) B.(-3,5) C.(3,-5) D.(-3,-5)8.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.49.如圖,在菱形ABCD中,于E,,,則菱形ABCD的周長是A.5 B.10 C.8 D.1210.已知2x=3y(x≠0,y≠0),則下面結論成立的是()A. B. C. D.11.如圖,銳角△ABC的高CD和BE相交于點O,圖中與△ODB相似的三角形有()A.1個B.2個C.3個D.4個12.把函數(shù)y=﹣3x2的圖象向右平移2個單位,所得到的新函數(shù)的表達式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2 C.y=﹣3x2+2 D.y=﹣3(x+2)2二、填空題(每題4分,共24分)13.從一批節(jié)能燈中隨機抽取40只進行檢查,發(fā)現(xiàn)次品2只,則在這批節(jié)能燈中隨機抽取一只是次品的概率為_______.14.因式分解:______.15.從這三個數(shù)中任取兩個不同的數(shù)作為點的坐標,則點剛好落在第四象限的概率是_.16.婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個手指,兩人出拳的手指數(shù)之和為偶數(shù)時婷婷獲勝.那么,婷婷獲勝的概率為______.17.如圖,AC為圓O的弦,點B在弧AC上,若∠CBO=58°,∠CAO=20°,則∠AOB的度數(shù)為___________18.設x1,x2是一元二次方程7x2﹣5=x+8的兩個根,則x1+x2的值是_____.三、解答題(共78分)19.(8分)(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=020.(8分)如圖,在Rt△ABC中,∠A=90°,AC=3,AB=4,動點P從點A出發(fā),沿AB方向以每秒2個單位長度的速度向終點B運動,點Q為線段AP的中點,過點P向上作PM⊥AB,且PM=3AQ,以PQ、PM為邊作矩形PQNM.設點P的運動時間為t秒.(1)線段MP的長為(用含t的代數(shù)式表示).(2)當線段MN與邊BC有公共點時,求t的取值范圍.(3)當點N在△ABC內(nèi)部時,設矩形PQNM與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式.(4)當點M到△ABC任意兩邊所在直線距離相等時,直接寫出此時t的值.21.(8分)綜合與探究:如圖,將拋物線向右平移個單位長度,再向下平移個單位長度后,得到的拋物線,平移后的拋物線與軸分別交于,兩點,與軸交于點.拋物線的對稱軸與拋物線交于點.(1)請你直接寫出拋物線的解析式;(寫出頂點式即可)(2)求出,,三點的坐標;(3)在軸上存在一點,使的值最小,求點的坐標.22.(10分)如圖所示,在中,于點E,于點F,延長AE至點G,使EG=AE,連接CG.(1)求證:;(2)求證:四邊形EGCF是矩形.23.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于A,B兩點,B點的坐標為(3,2),連接OA,OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)求△AOB的面積.24.(10分)一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.(1)從袋中隨機摸出一個球,記錄其顏色,然后放回,攪勻,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.2,求n的值;(2)若,小明兩次摸球(摸出一球后,不放回,再摸出一球),請用樹狀圖畫出小明摸球的所有結果,并求出兩次摸出不同顏色球的概率.25.(12分)如圖,在中,,且點的坐標為(1)畫出繞點逆時針旋轉后的.(2)求點旋轉到點所經(jīng)過的路線長(結果保留)(3)畫出關于原點對稱的26.如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它過點A、B、C(要求尺規(guī)作圖保留作圖痕跡);(2)在(1)所作的圓中,求圓心角∠BOC的度數(shù)和該圓的半徑

參考答案一、選擇題(每題4分,共48分)1、B【分析】如圖(見解析),先根據(jù)正五邊形的性質得圓心角的度數(shù),再根據(jù)圓周角定理即可得.【詳解】如圖,連接OA、OE、OD由正五邊形的性質得:由圓周角定理得:(一條弧所對圓周角等于其所對圓心角的一半)故選:B.本題考查了正五邊形的性質、圓周角定理,熟記性質和定理是解題關鍵.2、C【分析】先根據(jù)所給新定義運算求出分段函數(shù)解析式,再根據(jù)函數(shù)解析式來判斷函數(shù)圖象即可.【詳解】解:∵a★b,∴∴當x>2時,函數(shù)圖象在第一象限且自變量的值不等于2,當x≤2時,是反比例函數(shù),函數(shù)圖象在二、四象限.故應選C.本題考查了分段函數(shù)及其圖象,理解所給定義求出分段函數(shù)解析式是解題的關鍵.3、C【分析】根據(jù)對頂角的定義、同位角的定義、三角形的外角和、角平分線的性質逐項判斷即可.【詳解】A、由對頂角的定義“如果一個角的兩邊分別是另一個角兩邊的反向延長線,且這兩個角有公共頂點,那么這兩個角是對頂角”可得,對頂角必相等,但相等的角未必是對頂角,此項不是真命題B、只有當兩直線平行,同位角必相等,此項不是真命題C、根據(jù)內(nèi)角和定理可知,任意多邊形的外角和都為,此項是真命題D、由角平分線的性質可知,角平分線上的點到角的兩邊距離相等,此項不是真命題故選:C.本題考查了對頂角的定義、同位角的定義、三角形的外角和、角平分線的性質,熟記各定義和性質是解題關鍵.4、C【分析】列舉出所有情況,看末位是1和3的情況占所有情況的多少即可.【詳解】依題意畫樹狀圖:∴共有6種情況,是奇數(shù)的有4種情況,所以組成的兩位數(shù)是偶數(shù)的概率=,故選:C.本題考查了樹狀圖法求概率以及概率公式;如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=,注意本題是不放回實驗.5、C【解析】由題意根據(jù)二次函數(shù)y=a(x-h)2+k(a≠0)的頂點坐標是(h,k),求出頂點坐標即可.【詳解】解:∵;∴頂點坐標為:(-3,5).故選:C.本題考查二次函數(shù)的性質和二次函數(shù)的頂點式.熟悉二次函數(shù)的頂點式方程y=a(x-h)2+k中的h、k所表示的意義是解決問題的關鍵.6、C【解析】根據(jù)拋物線的開口方向、對稱軸公式以及二次函數(shù)性質逐項進行判斷即可得答案.【詳解】A、∵a=1>0,∴拋物線開口向上,選項A不正確;B、∵﹣,∴拋物線的對稱軸為直線x=,選項B不正確;C、當x=0時,y=x2﹣x=0,∴拋物線經(jīng)過原點,選項C正確;D、∵a>0,拋物線的對稱軸為直線x=,∴當x>時,y隨x值的增大而增大,選項D不正確,故選C.【點睛】本題考查了二次函數(shù)的性質:二次函數(shù)y=ax2+bx+c(a≠0),對稱軸直線x=-,當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,當a<0時,拋物線y=ax2+bx+c(a≠0)的開口向下,c=0時拋物線經(jīng)過原點,熟練掌握相關知識是解題的關鍵.7、B【分析】由題意根據(jù)關于原點對稱點的坐標特征即點的橫縱坐標都互為相反數(shù)即可得出答案.【詳解】解:點P的坐標為(3,-5)關于原點中心對稱的點的坐標是(-3,5),故選:B.本題考查點關于原點對稱的點,掌握關于原點對稱點的坐標特征即橫縱坐標都互為相反數(shù)是解題的關鍵.8、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質以及二次函數(shù)最值等知識,正確得出A點坐標是解題關鍵.9、C【解析】連接AC,根據(jù)線段垂直平分線的性質可得AB=AC=2,然后利用周長公式進行計算即可得答案.【詳解】如圖連接AC,,,,菱形ABCD的周長,故選C.本題考查了菱形的性質、線段的垂直平分線的性質等知識,熟練掌握的靈活應用相關知識是解題的關鍵.10、D【分析】根據(jù)比例的性質,把等積式寫成比例式即可得出結論.【詳解】A.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,B.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,C.由內(nèi)項之積等于外項之積,得x:y=3:2,即,故該選項不符合題意,D.由內(nèi)項之積等于外項之積,得2:y=3:x,即,故D符合題意;故選:D.本題考查比例的性質,熟練掌握比例內(nèi)項之積等于外項之積的性質是解題關鍵.11、C【解析】試題解析:∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故選C.12、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答.【詳解】二次函數(shù)y=﹣3x1的圖象向右平移1個單位,得:y=﹣3(x﹣1)1.故選:B.本題考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.二、填空題(每題4分,共24分)13、【分析】利用概率公式求解可得.【詳解】解:在這批節(jié)能燈中隨機抽取一只是次品的概率為=,故答案為:.本題考查概率公式,熟練掌握計算法則是解題關鍵.14、x(x-5)【分析】直接提公因式,即可得到答案.【詳解】解:,故答案為:.本題考查了提公因式法因式分解,解題的關鍵是熟練掌握因式分解的方法.15、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與P點剛好落在第四象限的情況即可求出問題答案.【詳解】解:畫樹狀圖得:

∵共有6種等可能的結果,其中(1,?2),(3,?2)點落在第四象限,

∴P點剛好落在第四象限的概率為,

故答案為:.本題考查的是用列表法或畫樹狀圖法求概率,熟記各象限內(nèi)點的符號特點是解題關鍵.16、【分析】根據(jù)題意,可用列舉法、列表法或樹狀統(tǒng)計圖來計算出總次數(shù)和婷婷獲勝的次數(shù),從而求出婷婷獲勝的概率【詳解】解:根據(jù)題意,一共有25個等可能的結果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);兩人出拳的手指數(shù)之和為偶數(shù)的結果有13個,所以婷婷獲勝的概率為故答案為:本題考查的是用列舉法等來求概率,找出所有可能的結果數(shù)和滿足要求的結果數(shù)是解決問題的關鍵.17、76°【分析】如圖,連接OC.根據(jù)∠AOB=2∠ACB,求出∠ACB即可解決問題.【詳解】如圖,連接OC.∵OA=OC=OB,∴∠A=∠OCA=20°,∠B=∠OCB=58°,∴∠ACB=∠OCB?∠OCA=58°?20°=38°,∴∠AOB=2∠ACB=76°,故答案為76°.本題考查等腰三角形的性質,圓周角定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.18、【解析】把方程化為一般形式,利用根與系數(shù)的關系直接求解即可.【詳解】把方程7x2-5=x+8化為一般形式可得7x2-x-13=0,

∵x1,x2是一元二次方程7x2-5=x+8的兩個根,

∴x1+x2=.故答案是:.主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.三、解答題(共78分)19、(1)x=3或x=1;(2)x=5【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【詳解】解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,則(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得x=3或x=1;(2)∵x2﹣10x+6=0,∴x2﹣10x=﹣6,則x2﹣10x+25=﹣6+25,即(x﹣5)2=19,∴x﹣5=±,則x=5.本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.20、(1)3t;(2)滿足條件的t的值為≤t≤;(3)S=;(4)滿足條件的t的值為或或.【分析】(1)根據(jù)路程、速度、時間的關系再結合題意解答即可.(2)分別出點M、N落在BC上時的t的范圍即可;(3)分重疊部分是矩形PQNM和五邊形PQNEF兩種情況進行解答即可;(4)按以下三種情形:當點M落在∠ABC的角平分線BF上時,滿足條件.作FELBC于E;當點M落在∠ACB的角平分線上時,滿足條件作EFLBC于F;當點M落在△ABC的∠ACB的外角的平分線上時,滿足條件.分別求解即可解答.【詳解】解:(1)由題意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案為3t.(2)如圖2﹣1中,當點M落在BC上時,∵PM∥AC,∴,∴,解得t=如圖2﹣2中,當點N落在BC上時,∵NQ∥AC,∴,∴,解得t=,綜上所述,滿足條件的t的值為≤t≤.(3)如圖3﹣1中,當0<t≤時,重疊部分是矩形PQNM,S=3t2如圖3﹣2中,當<t≤時,重疊部分是五邊形PQNEF.S=S矩形PQNM﹣S△EFM=3t2﹣?[3t﹣(4﹣2t)]?[3t﹣(4﹣2t)]=﹣t2+18t﹣6,綜上所述,.(4)如圖4﹣1中,當點M落在∠ABC的角平分線BF上時,滿足條件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,設AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,則有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴,∴,∴t=如圖4﹣2中,當點M落在∠ACB的角平分線上時,滿足條件作EF⊥BC于F.同法可證:△ECA≌△ECF(AAS),∴AE=EF,AC=CF=3,設AE=EF=y(tǒng),∴BF=5﹣3=2,在Rt△EFB中,則有x2+22=(4﹣x)2,解得x=,∵PM∥AC,∴,∴,解得t=.如圖4﹣3中,當點M落在△ABC的∠ACB的外角的平分線上時,滿足條件.設MC的延長線交BA的延長線于E,作EF⊥BC交BC的延長線于分,同法可證:AC=CF=3,EF=AE,設EF=EA=x,在Rt△EFB中,則有x2+82=(x+4)2,解得x=6,∵AC∥PM,∴,∴,解得t=,綜上所述,滿足條件的t的值為或或.本題考查了矩形的性質,多邊形的面積,角平分線的性質等知識,掌握分類討論的思想思是解答本題的關鍵.21、(1);(2),,;(3).【分析】(1)可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進行解答.(2)令x=0即可得到點C的坐標,令y=0即可得到點B,A的坐標(3)有圖像可知的對稱軸,即可得出點D的坐標;由圖像得出的坐標,設直線的解析式為,代入數(shù)值,即可得出直線的解析式,就可以得出點P的坐標.【詳解】解:(1)二次函數(shù)向右平移個單位長度得,,再向下平移個單位長度得故答案為:.(2)由拋物線的圖象可知,.當時,,解得:,.,.(3)由拋物線的圖象可知,其對稱軸的為直線,將代入拋物線,可得.由拋物線的圖象可知,點關于拋物線的對稱軸軸的對稱點為.設直線的解析式為,解得:直線直線的解析式為與軸交點即為點,.本題考查了二次函數(shù)的綜合,熟練掌握二次函數(shù)的性質及圖形是解題的關鍵.22、(1)見解析;(2)見解析.【分析】(1)根據(jù)平行四邊形的性質可得,進而可得,由,得,由AAS證明即可;(2)由(1)全等三角形的性質得AE=CF,證出EG=CF,則四邊形EGCF是平行四邊形,由,即可得證.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴,∵于點E,于點F,∴,,在和中,,∴;(2)由(1)得:,,∴AE=CF,∵EG=AE,∴EG=CF,∴四邊形EGCF是平行四邊形,又∵,∴四邊形EGCF是矩形.本題主要考查平行四邊形的性質、全等三角形的判定及矩形的判定,關鍵是根據(jù)平行四邊形的性質得到三角形全等的條件,然后由三角形全等的性質得到邊的等量關系,進而根據(jù)有一個角為直角的平行四邊形是矩形來判定即可.23、(1)y=;y=-x+6(2)【解析】(1)先利用待定系數(shù)法求出反比例函數(shù)解析式,進而確定出點A的坐標,再用待定系數(shù)法求出一次函數(shù)解析式;(2)先求出OB的解析式,進而求出AG,用三角形的面積公式即可得出結論.【詳解】解:(1)如圖,過點A作AF⊥x軸交BD于E,∵點B(3,2)在反比例函數(shù)的圖象上,∴a=3×2=6,∴反比例函數(shù)的表達式為,∵B(3,2),∴EF=2,∵BD⊥y軸,OC=CA,∴AE=EF=AF,∴AF=4,∴點A的縱坐標為4,∵點A在反比例函數(shù)圖象上,∴A(,4),∴,∴,∴一次函數(shù)的表達式為;(2)如圖1,過點A作AF⊥x軸于F交OB于G,∵B(3,2),∴直線OB的解析式為y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.此題主要考查了待定系數(shù)法,三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論