佛山市一模高三數(shù)學(xué)試卷_第1頁(yè)
佛山市一模高三數(shù)學(xué)試卷_第2頁(yè)
佛山市一模高三數(shù)學(xué)試卷_第3頁(yè)
佛山市一模高三數(shù)學(xué)試卷_第4頁(yè)
佛山市一模高三數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

佛山市一模高三數(shù)學(xué)試卷一、選擇題(每題1分,共10分)

1.下列函數(shù)中,在實(shí)數(shù)范圍內(nèi)有最大值的是()

A.\(f(x)=x^2-4x+4\)

B.\(f(x)=-x^2+4x-4\)

C.\(f(x)=x^3-3x^2+4x-4\)

D.\(f(x)=\frac{1}{x^2-2x+1}\)

2.若復(fù)數(shù)\(z\)滿足\(|z-1|=|z+1|\),則復(fù)數(shù)\(z\)的軌跡是()

A.直線\(x=0\)

B.圓\(x^2+y^2=1\)

C.雙曲線\(x^2-y^2=1\)

D.焦點(diǎn)在\(x\)軸上的橢圓

3.已知等差數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和為\(S_n=3n^2-n\),則該數(shù)列的公差為()

A.5

B.4

C.3

D.2

4.若\(\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}\),則\(\sin2\alpha\)的值為()

A.\(\frac{1}{2}\)

B.\(\frac{\sqrt{2}}{2}\)

C.\(\frac{3}{2}\)

D.\(\frac{\sqrt{3}}{2}\)

5.下列函數(shù)中,在\(x=0\)處有極值的是()

A.\(f(x)=x^3\)

B.\(f(x)=x^2\)

C.\(f(x)=x^4\)

D.\(f(x)=\frac{1}{x^2}\)

6.已知\(\triangleABC\)中,\(\sinA=\frac{3}{5}\),\(\cosB=\frac{4}{5}\),則\(\sinC\)的值為()

A.\(\frac{7}{25}\)

B.\(\frac{24}{25}\)

C.\(\frac{12}{25}\)

D.\(\frac{3}{25}\)

7.下列數(shù)列中,是等比數(shù)列的是()

A.\(\{2,4,8,16,\ldots\}\)

B.\(\{1,3,6,10,\ldots\}\)

C.\(\{1,2,4,8,\ldots\}\)

D.\(\{1,3,9,27,\ldots\}\)

8.若\(\log_2x+\log_2y=3\),則\(xy\)的值為()

A.8

B.16

C.32

D.64

9.下列函數(shù)中,在\(x=1\)處有拐點(diǎn)的是()

A.\(f(x)=x^2\)

B.\(f(x)=x^3\)

C.\(f(x)=e^x\)

D.\(f(x)=\lnx\)

10.若\(\tan\alpha=\frac{1}{3}\),則\(\sin\alpha\)的值為()

A.\(\frac{3}{\sqrt{10}}\)

B.\(\frac{1}{\sqrt{10}}\)

C.\(\frac{3}{\sqrt{2}}\)

D.\(\frac{1}{\sqrt{2}}\)

二、多項(xiàng)選擇題(每題4分,共20分)

1.下列各式中,屬于三角函數(shù)的有()

A.\(\sin^2x+\cos^2x=1\)

B.\(\frac{1}{\sinx}=\cscx\)

C.\(\tan^2x+1=\sec^2x\)

D.\(\log_2(\sinx)\)

E.\(\sqrt{\frac{1}{1+\tan^2x}}=\cosx\)

2.已知數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式為\(a_n=3^n-2^n\),則下列說(shuō)法正確的是()

A.\(\{a_n\}\)是等差數(shù)列

B.\(\{a_n\}\)是等比數(shù)列

C.\(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=3^n-2^n\)

D.\(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=3^n+2^n-1\)

E.\(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=3^n-2^n+1\)

3.下列各函數(shù)中,其圖像關(guān)于原點(diǎn)對(duì)稱的有()

A.\(f(x)=x^2\)

B.\(f(x)=\frac{1}{x}\)

C.\(f(x)=\sinx\)

D.\(f(x)=e^x\)

E.\(f(x)=\lnx\)

4.若\(\log_2x\)和\(\log_3x\)是方程\(ax^2-2x+b=0\)的兩個(gè)實(shí)數(shù)根,則下列說(shuō)法正確的是()

A.\(a>0\)

B.\(a<0\)

C.\(b>0\)

D.\(b<0\)

E.\(ab>0\)

5.下列各曲線中,屬于二次函數(shù)圖像的是()

A.\(y=x^2-4x+4\)

B.\(y=-x^2+4x-4\)

C.\(y=\frac{1}{x^2-2x+1}\)

D.\(y=x^2+2x+1\)

E.\(y=\frac{1}{x}+x\)

三、填空題(每題4分,共20分)

1.已知\(\sin\alpha=\frac{3}{5}\),且\(\alpha\)的終邊在第二象限,則\(\cos\alpha=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、計(jì)算題(每題10分,共50分)

1.計(jì)算下列三角函數(shù)的值:

\(\sin75^\circ\)和\(\cos75^\circ\)。

2.解下列方程:

\(3x^2-5x+2=0\)。

3.已知等差數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和為\(S_n=4n^2-3n\),求該數(shù)列的首項(xiàng)\(a_1\)和公差\(d\)。

4.已知\(\log_2x\)和\(\log_3x\)是方程\(ax^2-2x+b=0\)的兩個(gè)實(shí)數(shù)根,且\(a>0\),\(b<0\),求\(a\)和\(b\)的值。

5.設(shè)函數(shù)\(f(x)=x^3-6x^2+9x-1\),求\(f(x)\)的極值點(diǎn)。

6.解下列不等式:

\(\frac{x^2-4x+3}{x-1}>0\)。

7.已知\(\triangleABC\)中,\(\sinA=\frac{3}{5}\),\(\cosB=\frac{4}{5}\),\(\sinC=\frac{7}{25}\),求\(\cosA\)和\(\cosB\)的值。

8.設(shè)\(f(x)=\lnx+\frac{1}{x}\),求\(f(x)\)的最小值。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題

1.答案:B

解題過(guò)程:\(f(x)=-x^2+4x-4\)是一個(gè)開(kāi)口向下的拋物線,其頂點(diǎn)坐標(biāo)為\((2,0)\),在實(shí)數(shù)范圍內(nèi)有最大值0。

2.答案:A

解題過(guò)程:由\(|z-1|=|z+1|\)可得\(z\)到點(diǎn)1和點(diǎn)-1的距離相等,因此\(z\)的軌跡是\(x=0\)。

3.答案:D

解題過(guò)程:\(S_n=3n^2-n\)的差分\(S_{n+1}-S_n=6n-1\)為等差數(shù)列的通項(xiàng),公差\(d=6\)。

4.答案:B

解題過(guò)程:\(\sin2\alpha=2\sin\alpha\cos\alpha=2\cdot\frac{3}{5}\cdot\frac{4}{5}=\frac{12}{25}\)。

5.答案:A

解題過(guò)程:\(f(x)=x^3\)在\(x=0\)處有極大值。

6.答案:D

解題過(guò)程:由正弦定理,\(\sinC=\sin(180^\circ-A-B)=\sin(A+B)=\sinA\cosB+\cosA\sinB=\frac{3}{5}\cdot\frac{4}{5}+\frac{4}{5}\cdot\frac{3}{5}=\frac{24}{25}\)。

7.答案:C

解題過(guò)程:等比數(shù)列的定義是相鄰兩項(xiàng)之比相等,因此\(\{1,2,4,8,\ldots\}\)是等比數(shù)列。

8.答案:C

解題過(guò)程:\(\log_2x+\log_2y=3\)可化簡(jiǎn)為\(\log_2(xy)=3\),即\(xy=2^3=8\)。

9.答案:B

解題過(guò)程:\(f(x)=x^3\)在\(x=0\)處有極小值。

10.答案:B

解題過(guò)程:\(\sin\alpha=\frac{1}{\sqrt{10}}\)。

二、多項(xiàng)選擇題

1.答案:ABCE

解題過(guò)程:\(\sin^2x+\cos^2x=1\),\(\frac{1}{\sinx}=\cscx\),\(\tan^2x+1=\sec^2x\),\(\sqrt{\frac{1}{1+\tan^2x}}=\cosx\)都是三角函數(shù)的基本關(guān)系。

2.答案:ACE

解題過(guò)程:\(\{a_n\}\)是等差數(shù)列,前\(n\)項(xiàng)和\(S_n=3^n-2^n\)。

3.答案:BCE

解題過(guò)程:\(\sinx\),\(\cosx\),\(\tanx\)是三角函數(shù),而\(\frac{1}{x}\)和\(\lnx\)不是。

4.答案:AD

解題過(guò)程:\(\log_2x\)和\(\log_3x\)是方程的實(shí)數(shù)根,因此\(a>0\),且\(\log_2x\)和\(\log_3x\)互為倒數(shù),所以\(ab>0\)。

5.答案:ABD

解題過(guò)程:\(y=x^2-4x+4\),\(y=-x^2+4x-4\),\(y=x^2+2x+1\)是二次函數(shù)圖像。

三、填空題

1.答案:\(-\frac{4}{5}\)

解題過(guò)程:由\(\sin\alpha=\frac{3}{5}\)和\(\alpha\)的終邊在第二象限,可得\(\cos\alpha=-\sqrt{1-\sin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論