




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山西省洪洞縣中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.點A(-2,5)關于原點對稱的點的坐標是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)2.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對3.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉90°后得到△A1B1C,則點B對應點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)4.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m5.已知一次函數且隨的增大而增大,那么它的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°7.下列各式中計算正確的是A. B. C. D.8.若一個凸多邊形的內角和為720°,則這個多邊形的邊數為A.4 B.5 C.6 D.79.函數(為常數)的圖像上有三點,,,則函數值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y110.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在4×4的方格紙中(共有16個小方格),每個小方格都是邊長為1的正方形.O、A、B分別是小正方形的頂點,則扇形OAB周長等于_____.(結果保留根號及π).12.不等式組的解集是____________;13.分解因式:x2y﹣xy2=_____.14.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.15.一次函數y=(k﹣3)x﹣k+2的圖象經過第一、三、四象限.則k的取值范圍是_____.16.計算:(2018﹣π)0=_____.三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長.18.(8分)臺州市某水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數關系如圖所示:(1)求日銷售量y與時間t的函數關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?19.(8分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側作等邊△DEB,連接AE,求證:AB平分∠EAC.20.(8分)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.21.(8分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數據sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當吊臂底部A與貨物的水平距離AC為5m時,吊臂AB的長為m.(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)22.(10分)計算:(π﹣3.14)0﹣2﹣|﹣3|.23.(12分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)24.某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).【詳解】根據中心對稱的性質,得點P(?2,5)關于原點對稱點的點的坐標是(2,?5).故選:B.【點睛】考查關于原點對稱的點的坐標特征,平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).2、B【解析】
由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.【點睛】本題考查了圓周角定理及正比例函數圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.3、B【解析】
作出點A、B繞點C按順時針方向旋轉90°后得到的對應點,再順次連接可得△A1B1C,即可得到點B對應點B1的坐標.【詳解】解:如圖所示,△A1B1C即為旋轉后的三角形,點B對應點B1的坐標為(2,2).故選:B.【點睛】此題主要考查了平移變換和旋轉變換,正確根據題意得出對應點位置是解題關鍵.圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.4、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.5、B【解析】
根據一次函數的性質:k>0,y隨x的增大而增大;k<0,y隨x的增大而減小,進行解答即可.【詳解】解:∵一次函數y=kx-3且y隨x的增大而增大,
∴它的圖象經過一、三、四象限,
∴不經過第二象限,
故選:B.【點睛】本題考查了一次函數的性質,掌握一次函數所經過的象限與k、b的值有關是解題的關鍵.6、A【解析】分析:依據AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.7、B【解析】
根據完全平方公式對A進行判斷;根據冪的乘方與積的乘方對B、C進行判斷;根據合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.8、C【解析】
設這個多邊形的邊數為n,根據多邊形的內角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設這個多邊形的邊數為n,由多邊形的內角和是720°,根據多邊形的內角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內角和定理,熟練掌握多邊形的內角和定理是解答本題的關鍵.9、A【解析】試題解析:∵函數y=(a為常數)中,-a1-1<0,∴函數圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.10、D【解析】
過A作AH∥CD交BC于H,根據題意得到∠BAE=90°,根據勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質,平行四邊形的判定和性質,正確的作出輔助線是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、π+4【解析】根據正方形的性質,得扇形所在的圓心角是90°,扇形的半徑是2.解:根據圖形中正方形的性質,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長等于π.12、﹣9<x≤﹣1【解析】
分別求出兩個不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式組的解集為:-9<x≤-1,故答案為:-9<x≤-1.【點睛】本題考查一元一次不等式組的解法,屬于基礎題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.13、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).14、270【解析】
根據三角形的內角和與平角定義可求解.【詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點睛】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.15、k>3【解析】分析:根據函數圖象所經過的象限列出不等式組通過解該不等式組可以求得k的取值范圍.詳解:∵一次函教y=(k?3)x?k+2的圖象經過第一、三、四象限,∴解得,k>3.故答案是:k>3.點睛:此題主要考查了一次函數圖象,一次函數的圖象有四種情況:
①當時,函數的圖象經過第一、二、三象限;
②當時,函數的圖象經過第一、三、四象限;
③當時,函數的圖象經過第一、二、四象限;
④當時,函數的圖象經過第二、三、四象限.16、1.【解析】
根據零指數冪:a0=1(a≠0)可得答案.【詳解】原式=1,故答案為:1.【點睛】此題主要考查了零次冪,關鍵是掌握計算公式.三、解答題(共8題,共72分)17、【解析】
過點B作BD⊥AC,在△ABD中由cosA=可計算出AD的值,進而求出BD的值,再由勾股定理求出BC的值.【詳解】解:過點B作BD⊥AC,垂足為點D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【點睛】本題考查了銳角的三角函數和勾股定理的運用.18、(1)y=﹣2t+200(1≤t≤80,t為整數);(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】
(1)根據函數圖象,設解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數法求解可得;
(2)設日銷售利潤為w,根據“總利潤=每千克利潤×銷售量”列出函數解析式,由二次函數的性質分別求得最值即可判斷;
(3)求出w=2400時t的值,結合函數圖象即可得出答案;【詳解】(1)設解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數);(2)設日銷售利潤為w,則w=(p﹣6)y,當1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【點睛】本題考查二次函數的應用,熟練掌握待定系數求函數解析式、由相等關系得出利潤的函數解析式、利用二次函數的圖象解不等式及二次函數的圖象與性質是解題關鍵.19、詳見解析【解析】
由等邊三角形的性質得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質,等邊三角形的性質等知識,熟練掌握等邊三角形的性質,證明三角形全等是解題的關鍵.20、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【解析】
分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,21、(1)11.4;(2)19.5m.【解析】
(1)根據直角三角形的性質和三角函數解答即可;
(2)過點D作DH⊥地面于H,利用直角三角形的性質和三角函數解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點D作DH⊥地面于H,交水平線于點E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點睛】本題考查解直角三角形、銳角三角函數等知識,解題的關鍵是添加輔助線,構造直角三角形.22、﹣1.【解析】
本題涉及零指數冪、負指數冪、二次根式化簡和特殊角的三角函數值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=1﹣3+4﹣3,=﹣1.【點睛】本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.23、(1)詳見解析;(2)(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【解析】
(1)根據角平分線的尺規(guī)作圖即可得;
(2)分別根據等腰三角形的性質、三角形外角的性質和平行線的判定求解可得.【詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水彩西瓜寫生課件
- 2025年度新型窯爐節(jié)能優(yōu)化改造項目承攬合同
- 2025年智慧城市地下綜合管廊建筑材料供應與服務協議
- 2025年綠色能源項目員工勞動合同及知識產權全面保護合同
- 2025年石材開采與加工安全風險防范責任書
- 2025年度幼兒園安全防范體系構建與實施服務合同
- 2025年幼兒園保育員聘用合同及校園安全風險管理服務協議
- 2025年企業(yè)內部研發(fā)成果知識產權保護及許可交易合同
- 2025年度五星級酒店食材冷鏈配送服務合同
- 2025年高效能鈑金噴漆企業(yè)綠色生產合作協議
- 2025年度鋁合金門購銷及節(jié)能技術合同
- 心源性休克的護理個案
- 2024年10月19日北京市下半年事業(yè)單位七區(qū)聯考《公共基本能力測驗》筆試試題(海淀-房山-西城-通州-豐臺-懷柔)真題及答案
- 《中國動態(tài)血壓監(jiān)測基層應用指南(2024年)》解讀 2
- 2025初中語文新教材培訓
- 企業(yè)技術人員管理制度
- DB13T 5545-2022 選礦廠安全生產基本條件
- 探索語文學習的有意義情境任務設計
- 血管內導管相關性血流感染預防與診治2025
- 智慧停車系統(tǒng)開發(fā)與運營合作
- T/SHPTA 102-2024聚四氟乙烯內襯儲罐技術要求
評論
0/150
提交評論