四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁
四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁
四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁
四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁
四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川成都青羊區(qū)外國語學(xué)校2024-2025學(xué)年數(shù)學(xué)高二第二學(xué)期期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)數(shù)列,()都是等差數(shù)列,若,則等于()A.60 B.62 C.63 D.662.已知是拋物線上一點,則到拋物線焦點的距離是()A.2 B.3 C.4 D.63.的展開式中的系數(shù)為()A.5 B.10 C.20 D.304.已知是離散型隨機變量,,,,則()A. B. C. D.5.我國古代數(shù)學(xué)名著九章算術(shù)中有這樣一些數(shù)學(xué)用語,“塹堵”意指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱,而“陽馬”指底面為矩形且有一側(cè)棱垂直于底面的四棱錐現(xiàn)有一如圖所示的塹堵,,,當(dāng)塹堵的外接球的體積為時,則陽馬體積的最大值為A.2 B.4 C. D.6.已知復(fù)數(shù)滿足,則共軛復(fù)數(shù)()A. B. C. D.7.已知冪函數(shù)的圖象關(guān)于y軸對稱,且在上是減函數(shù),則()A.- B.1或2 C.1 D.28.曲線在點處的切線方程為A. B. C. D.9.橢圓的焦點坐標是()A. B. C. D.10.若,,則()A. B. C. D.11.定義在上的函數(shù)滿足,且當(dāng)時,,對,,使得,則實數(shù)的取值范圍為()A. B.C. D.12.已知函數(shù)的導(dǎo)函數(shù)為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體中,E為線段的中點,則AE與所成角的余弦值為____.14.出租車司機從南昌二中新校區(qū)到老校區(qū)(蘇圃路)途中有個交通崗,假設(shè)他在各交通崗遇到紅燈是相互獨立的,并且概率都是則這位司機在途中遇到紅燈數(shù)的期望為____.(用分數(shù)表示)15.已知復(fù)數(shù)對應(yīng)復(fù)平面上的點,復(fù)數(shù)滿足,則復(fù)數(shù)的共軛復(fù)數(shù)為______.16.已知曲線在點處的切線為,則點的坐標為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知復(fù)數(shù)滿足,在復(fù)平面上對應(yīng)點的軌跡為,、分別是曲線的上、下頂點,是曲線上異于、的一點.(1)求曲線的方程;(2)若在第一象限,且,求的坐標;(3)過點作斜率為的直線分別交曲線于另一點,交軸于點.求證:存在常數(shù),使得恒成立,并求出的值.18.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)對于任意正實數(shù)x,不等式恒成立,求實數(shù)k的取值范圍.19.(12分)已知函數(shù),其中為正實數(shù).(1)若函數(shù)在處的切線斜率為2,求的值;(2)求函數(shù)的單調(diào)區(qū)間;(3)若函數(shù)有兩個極值點,求證:20.(12分)已知直線,(為參數(shù)),,(為參數(shù)),(1)若,求的值;(2)在(l)的條件下,圓(為參數(shù))的圓心到直線的距離.21.(12分)假設(shè)某士兵遠程射擊一個易爆目標,射擊一次擊中目標的概率為,三次射中目標或連續(xù)兩次射中目標,該目標爆炸,停止射擊,否則就一直獨立地射擊至子彈用完.現(xiàn)有5發(fā)子彈,設(shè)耗用子彈數(shù)為隨機變量X.(1)若該士兵射擊兩次,求至少射中一次目標的概率;(2)求隨機變量X的概率分布與數(shù)學(xué)期望E(X).22.(10分)已知二次函數(shù)的值域為,且,.(Ⅰ)求的解析式;(Ⅱ)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設(shè)數(shù)列的公差為,則由題意可得,求得的值,得到數(shù)列的通項公式,即可求解得值,得到答案.【詳解】由題意,數(shù)列,都是等差數(shù)列,且,設(shè)數(shù)列的公差為,則有,即,解得,所以,,所以,故選A.本題主要考查了等差數(shù)列的定義,以及等差數(shù)列的通項公式的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解析】分析:直接利用拋物線的定義可得:點到拋物線焦點的距離.詳解:由拋物線方程可得拋物線中,則利用拋物線的定義可得點到拋物線焦點的距離.故選B.點睛:本題考查了拋物線的定義標準方程及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)乘法分配律和二項式展開式的通項公式,列式求得的系數(shù).【詳解】根據(jù)乘法分配律和二項式展開式的通項公式,題目所給表達式中含有的為,故展開式中的系數(shù)為,故選D.本小題主要考查二項式展開式通項公式的應(yīng)用,考查乘法分配律,屬于基礎(chǔ)題.4、A【解析】分析:由已知條件利用離散型隨機變量的數(shù)學(xué)期望計算公式求出a,進而求出,由此即可求出答案.詳解:是離散型隨機變量,,,,由已知得,解得,,.故選:A.點睛:本題考查離散型隨機變量的方差的求法,是基礎(chǔ)題,解題時要認真審題,注意離散型隨機變量的數(shù)學(xué)期望和方差計算公式的合理運用.5、D【解析】

由已知求出三棱柱外接球的半徑,得到,進一步求得AB,再由棱錐體積公式結(jié)合基本不等式求最值.【詳解】解:塹堵的外接球的體積為,其外接球的半徑,即,又,.則..即陽馬體積的最大值為.故選:D.本題考查多面體的體積、均值定理等基礎(chǔ)知識,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,是中檔題.6、D【解析】

先利用復(fù)數(shù)的乘法將復(fù)數(shù)表示為一般形式,然后利用共軛復(fù)數(shù)的定義得出.【詳解】,因此,,故選D.本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,解復(fù)數(shù)相關(guān)的問題,首先利用復(fù)數(shù)四則運算性質(zhì)將復(fù)數(shù)表示為一般形式,然后針對實部和虛部求解,考查計算能力,屬于基礎(chǔ)題.7、C【解析】分析:由為偶數(shù),且,即可得結(jié)果.詳解:冪函數(shù)的圖象關(guān)于軸對稱,且在上是減函數(shù),為偶數(shù),且,解得,故選C.點睛:本題考查冪函數(shù)的定義、冪函數(shù)性質(zhì)及其應(yīng)用,意在考查綜合利用所學(xué)知識解決問題的能力.8、C【解析】

根據(jù)題意可知,結(jié)合導(dǎo)數(shù)的幾何意義,先對函數(shù)進行求導(dǎo),求出點處的切線斜率,再根據(jù)點斜式即可求出切線方程。【詳解】由題意知,因此,曲線在點處的切線方程為,故答案選C。本題主要考查了利用導(dǎo)數(shù)的幾何意義求切線方程,一般利用點斜式構(gòu)造直線解析式。9、C【解析】

從橢圓方程確定焦點所在坐標軸,然后根據(jù)求的值.【詳解】由橢圓方程得:,所以,又橢圓的焦點在上,所以焦點坐標是.求橢圓的焦點坐標時,要先確定橢圓是軸型還是軸型,防止坐標寫錯.10、A【解析】分析:利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后利用復(fù)數(shù)相等的性質(zhì)列方程求解即可.詳解:因為,所以,解得,故選A.點睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.11、D【解析】由題知問題等價于函數(shù)在上的值域是函數(shù)在上的值域的子集.當(dāng)時,,由二次函數(shù)及對勾函數(shù)的圖象及性質(zhì),得此時,由,可得,當(dāng)時,.則在的值域為.當(dāng)時,,則有,解得,當(dāng)時,,不符合題意;當(dāng)時,,則有,解得.綜上所述,可得的取值范圍為.故本題答案選.點睛:求解分段函數(shù)問題應(yīng)對自變量分類討論,討論的標準就是自變量與分段函數(shù)所給出的范圍的關(guān)系,求解過程中要檢驗結(jié)果是否符合討論時的范圍.討論應(yīng)該不重復(fù)不遺漏.12、D【解析】

求導(dǎo)數(shù),將代入導(dǎo)函數(shù)解得【詳解】將代入導(dǎo)函數(shù)故答案選D本題考查了導(dǎo)數(shù)的計算,把握函數(shù)里面是一個常數(shù)是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】

以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出AE與CD1所成角的余弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,則A(2,0,0),E(2,2,1),C(0,2,0),D1(0,0,2),(0,2,1),(0,﹣2,2),設(shè)AE與CD1所成角為θ,則cosθ,∴AE與CD1所成角的余弦值為.故答案為.本題考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.14、【解析】

遇到紅燈相互獨立且概率相同可知,根據(jù)二項分布數(shù)學(xué)期望求解公式求得結(jié)果.【詳解】由題意可知,司機在途中遇到紅燈數(shù)服從于二項分布,即期望本題正確結(jié)果:本題考查服從于二項分布的隨機變量的數(shù)學(xué)期望的求解,考查對于二項分布數(shù)學(xué)期望計算公式的掌握,屬于基礎(chǔ)題.15、【解析】

先計算復(fù)數(shù)的模,再計算復(fù)數(shù),最后得到共軛復(fù)數(shù).【詳解】復(fù)數(shù)對應(yīng)復(fù)平面上的點復(fù)數(shù)的共軛復(fù)數(shù)為故答案為本題考查了復(fù)數(shù)的運算,復(fù)數(shù)的模,共軛復(fù)數(shù),意在考查學(xué)生的計算能力.16、.【解析】分析:設(shè)切點坐標為,求得,利用且可得結(jié)果.詳解:設(shè)切點坐標為,由得,,,即,故答案為.點睛:應(yīng)用導(dǎo)數(shù)的幾何意義求切點處切線的斜率,主要體現(xiàn)在以下幾個方面:(1)已知切點求斜率,即求該點處的導(dǎo)數(shù);(2)己知斜率求切點即解方程;(3)巳知切線過某點(不是切點)求切點,設(shè)出切點利用求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)證明見解析,.【解析】

(1)根據(jù)復(fù)數(shù)模的幾何意義以及橢圓的定義可得出曲線為橢圓,并設(shè)曲線的方程為,求出、的值,可得出曲線的方程;(2)設(shè)點的坐標為,根據(jù)以及得出關(guān)于、的方程組,解出這兩個未知數(shù),即可得出點的坐標;(3)設(shè)直線的方程為,設(shè)點、,將直線的方程與曲線的方程聯(lián)立,并列出韋達定理,求出點的坐標,并求出、、、的表達式,結(jié)合韋達定理可求出的值.【詳解】(1)設(shè)復(fù)數(shù),由可知,復(fù)平面內(nèi)的動點到點、的距離之和為,且有,所以,曲線是以點、為左、右焦點的橢圓,設(shè)曲線的方程為,則,,.因此,曲線的方程為;(2)設(shè)點的坐標為,則,又點在曲線上,所以,解得,因此,點的坐標為;(3)設(shè)直線的方程為,點、,直線交軸于點,將直線的方程與曲線的方程聯(lián)立得,消去,得,得由韋達定理得,.,,,,因此,.本題考查橢圓的軌跡方程、橢圓上的點的坐標的求解以及直線與橢圓中線段長度比的問題,一般利用將直線方程與橢圓方程聯(lián)立,利用韋達定理設(shè)而不求法求解,考查運算求解能力,屬于中等題.18、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)【解析】

(1)利用導(dǎo)數(shù)的正負即可求出單調(diào)區(qū)間;(2)分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最小值即可;【詳解】(1)因為.所以,令,得,當(dāng)時,;當(dāng)時,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.(2)由于,恒成立,所以.構(gòu)造函數(shù),所以.令,解得,當(dāng)時,,當(dāng)時,.所以函數(shù)在點處取得最小值,即.因此所求k的取值范圍是.本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的恒成立問題,考查計算能力和分析問題的能力,以及轉(zhuǎn)化思想,屬于中檔題.19、(1)1;(2)見解析;(3)見解析【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得,解得的值;(2)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)是否變號分類討論,最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)區(qū)間(3)先根據(jù)韋達定理得,再化簡,進而化簡所證不等式為,最后利用導(dǎo)函數(shù)求函數(shù)單調(diào)性,進而確定最小值,證得結(jié)論試題解析:(1)因為,所以,則,所以的值為1.(2),函數(shù)的定義域為,若,即,則,此時的單調(diào)減區(qū)間為;若,即,則的兩根為,此時的單調(diào)減區(qū)間為,,單調(diào)減區(qū)間為.(3)由(2)知,當(dāng)時,函數(shù)有兩個極值點,且.因為要證,只需證.構(gòu)造函數(shù),則,在上單調(diào)遞增,又,且在定義域上不間斷,由零點存在定理,可知在上唯一實根,且.則在上遞減,上遞增,所以的最小值為.因為,當(dāng)時,,則,所以恒成立.所以,所以,得證.20、(1)-1;(2)【解析】

(1)將兩條直線的參數(shù)方程化為普通方程后,利用兩條直線垂直的條件列式可解得.(2)將參數(shù)方程化為普通方程后,得圓心坐標,再由點到直線的距離公式可得.【詳解】(1)由消去參數(shù)得,由消去參數(shù)得,因為,所以,解得.(2)由(1)得直線,由消去參數(shù)得,其圓心為,由點到直線的距離公式得圓心到直線的距離為:.本題考查了參數(shù)方程化普通方程,兩條直線垂直的條件,點到直線的距離公式,屬于基礎(chǔ)題.21、(1).(2)分布列見解析,.【解析】分析:(1)利用對立事件即可求出答案;(2)耗用子彈數(shù)的所有可能取值為2,3,4,5,分別求出相應(yīng)的概率即可.詳解:(1)該士兵射擊兩次,至少射中一次目標的概率為.(2)耗用子彈數(shù)的所有可能取值為2,3,4,5.當(dāng)時,表示射擊兩次,且連續(xù)擊中目標,;當(dāng)時,表示射擊三次,第一次未擊中目標,且第二次和第三次連續(xù)擊中目標,;當(dāng)時,表示射擊四次,第二次未擊中目標,且第三次和第四次連續(xù)擊中目標,;當(dāng)時,表示射擊五次,均未擊中目標,或只擊中一次目標,或擊中兩次目標前四次擊中不連續(xù)兩次或前四次擊中一次且第五次擊中,或擊中三次第五次擊中且前四次無連續(xù)擊中。;隨機變量的數(shù)學(xué)期望.點睛:本題考查離散型隨機變量的分布列和數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論