




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高等數(shù)學(xué)(上)(中國(guó)石油大學(xué)(華東))知到智慧樹(shù)期末考試答案題庫(kù)2025年中國(guó)石油大學(xué)(華東)設(shè)函數(shù)是定義在上的函數(shù),則函數(shù)在上的奇偶性為
答案:奇函數(shù)解決相關(guān)變化率的問(wèn)題,一般會(huì)采取下列哪些步驟(
)
答案:畫(huà)出示意圖,并在圖中標(biāo)注相關(guān)變量;;用變量符號(hào)寫(xiě)出已知數(shù)據(jù),注意量綱統(tǒng)一;;正確建立個(gè)變量之間的關(guān)系;;對(duì)關(guān)系式兩邊關(guān)于時(shí)間(或其他屬性變量)求導(dǎo),得導(dǎo)數(shù)關(guān)系式;;根據(jù)已知條件,計(jì)算出待求變化率.若函數(shù)在一點(diǎn)處的左、右導(dǎo)數(shù)存在,則函數(shù)在該點(diǎn)處不一定可導(dǎo)。
答案:對(duì)函數(shù)的最值點(diǎn)一定是它的極值點(diǎn).
答案:錯(cuò)函數(shù)極限為
答案:2函數(shù)在某一點(diǎn)的導(dǎo)數(shù)是(
)
答案:函數(shù)在這點(diǎn)到它附近一點(diǎn)之間的平均變化率函數(shù)在一點(diǎn)處不連續(xù),則函數(shù)在該點(diǎn)處一定不可導(dǎo)。
答案:對(duì)函數(shù),當(dāng)時(shí)的極限為(
)
答案:不存在以下各題計(jì)算結(jié)果正確的是(
)
答案:以下各題計(jì)算結(jié)果正確的是(
)下列說(shuō)法正確的是(
).
答案:下列說(shuō)法正確的是(
).下列說(shuō)法中正確的是(
).
答案:下列說(shuō)法中正確的是(
).下列是拉格朗日中值定理的結(jié)果形式是(
)
答案:下列是拉格朗日中值定理的結(jié)果形式是(
)下列是弧微分的公式的是(
)
答案:下列是弧微分的公式的是(
)下列無(wú)窮限積分中,積分收斂的有(
)
答案:下列無(wú)窮限積分中,積分收斂的有(
)下列廣義積分收斂的是()
答案:下列廣義積分收斂的是()下列廣義積分中,計(jì)算結(jié)果為零是(
)
答案:下列廣義積分中,計(jì)算結(jié)果為零是(
)下列廣義積分中,發(fā)散的是(
)
答案:下列廣義積分中,發(fā)散的是(
)下列各式正確的是
(
).
答案:下列各式正確的是
(
).下列函數(shù)中為奇函數(shù)的是(
)
答案:下列函數(shù)中為奇函數(shù)的是(
)下列函數(shù)中為奇函數(shù)的是
(
)
答案:下列函數(shù)中為奇函數(shù)的是
(
)下列函數(shù)中為偶函數(shù)的是(
)
答案:下列函數(shù)中為偶函數(shù)的是(
)下列函數(shù)中,圖形關(guān)于
y
軸對(duì)稱的有(
)
答案:下列函數(shù)中,圖形關(guān)于
y
軸對(duì)稱的有(
)
答案::image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYcAAAA6CAYAAABbPZVhAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAA4QSURBVHhe7Z07duo8F4Z3/rFAChYjICPAaaho00FJmnQp6WighC5tKprYIwgjYFHEzIV/b0k2siXfwJBzvvM+Z2klXGJL2tK+SfJ5ODEEAAAAWPzP/AQAAABSYBwAAAA4wDgAAABwgHEAAADgAOMAAADAAcYBAACAA4wDAAAABxgHAAAADjAOAAAAHGAcAAAAOMA4AAAAcIBxAAAA4ADjAAAAwAHGAQAAgAOMAwAAAAcYBwAAAA4wDgAAABxgHAAAADjAOAAAAHD4B43DkVZPD/TwIGVKkXkXAADAmX/OOBxXC6KPE51OJwonGwqeVmwuAAAA2DywkjyZ3/89jit66h7o/bSmoXkLAADAtZFDtKKV5XYfV6vr0zSssFf3yvV0HqlvfgV5jnT8U0KqqjHBFb1FVY+eDoiipoOzoh9vVHfNBTLMzekzNxwPN+0Dl+NqWtBGYHNlWulAr107b/9JQe08fkTThwd68kjpM3igaSRrAzdeEzj+EC3fEDUU8PXyQA/Tm0qgNp/BU8mE/qKXh7LP81jrTp72RVP9WbfbdT/fBma9qm7p8nVK6taJacHfc6txmTKWup/nVIfihe/axRx/PnlO++rL9ez656tConCn7TUL93PXl961rll43woidljdv9xzG5v1y6/AjsivVlHSShcTTk40Cc2L0yleDk7Wy3Jyf5sSL0+DwfIUqxfhacJV9H6vBcJlcp87I23kdt2oWS0Rn5aDwWn5Kx2URcbVoKwi0p9VnSnjTcaSKla74vgUZz4rl0s48X8u71eP5wLk/ul3uD7my+qaVr1UKbuWGlc8B5fh+Tt87SbjLJwUyDxTx4aY/i2XIbdbfrCs7fZm6m7mjf25Xbzt9Mw1dY8mnVIX1c4Ja6220PqvtN9uyC8tSLPnNt+z06599kyoLqme3YH9FGFI63hJk15XvWqT4+qJto8z9q3uDbf95ZV25tWfS0yHXZ8eKzsootWFXl05Z++++7qj3St78Ymneekus8GSeJqxQ/RNs6RdnY4eA5NQbVKQsr4wlJyMrD8sTM8weS872BA3kLrqtUQaiVc7INYLpl4xsbGm5UfxmD1+fdJu8k7r2fD8neGIaF616eLIc1C+EdGW3k3fcP9bubxou6HJe/bevrSbj2jLc53b8Z12ugcjh87sO5UDG0eXVIZWYR3BBpiMOsnSmdE3f77PRZ6DlnWK6JOH7Yjr0+b6Jes/bt8HvVwcOV1DM+PgG9Sbc5gtk3gTWJ9L8YWL0YI+xx9mEPKADILixrNwRwdPeH8FIsgX7nKtBG6l3ArgtnM3/SVsKLBl6S0BvbLibn/wdmj2LZM/pImjENbULVnfiqYe49HtsaptCystZYqeCtZ7watOz2gvJ4soLFb2YRhbbeLC2pC9RPW7Y6COX/TZTxS3B56bL699Cp0/HNLb+JMWFdPnZy7Gd0uj0da0octyDbSR4mvP8+3jImm3vNxdg3Gkn15xve+S/+8803hwdnTiQ8sTMJpS9/BOp0u9igrEYIqBuHsajAdiffIhsoRRVniWTyv5Q3AOlaxr6JTBUqePCoq6RrhsJcXhhur3TJ1ImMhhpwmzbxHZtoepq3n1a3BfSVitUgG5cZOVY7Y4oXhBSkKPrew4LsM/povfV/ctSMfk0xu6TefxaKd45LPiKkoKsGw81fk8Nw+k3uYPvKkm1Z/u+PDJZcDXzr+XKQUVS/pUzVnpw6K+LOljl/K+UPcq7igP95on95+Pd04rySJ0QJs0hGbv43NMH7OZCp+4PlzYU+R/3AnmtfGihrNirynBRDZZb8Z4ecbsDtfn6+pipRhuTDQNiMJ7bZvVC/52xKVCX3mvztmO4w/tza+tUEM2PiQlMX7WAhqMnzNpjcTLZuVArMhSmbIyS/8mQyYC0eMszQRZEXC2NFno1qh+ruHmdWbvNNnMzfUjWvBciL3j8Uhfh7E/bcIcVy8ciccl6TCJwkLiMLB5hMdy2/aSKL8eqVy4sLEgGn+kr1n5iu7NfH5Ox5kxa0oSjW1H/N2PR4p9UVgRZrxlZSmFI6LdgPZz32f6noP9jxt5FhFtaTMZ3WFOD2k02dC8qfyu4M7GYUjrMDSKvyiH2qVeLv5PlFrZfFM7TLo6l7/7/HKV32ZbX+A5kt0rVaV04nHoGVB4cT67EXwvSffwOOd2a+UjbZBUmpqU3zXXWgY9lkY5ct0qPXixbCSdkebAEyLZxNE+lnERhXVWcEXOQza1ZKeVVD+PfmoYFckpm+tHP9Qzc8E1LjE9jgpkxrKW+5Xm85XSnVMvDqmfrN3UMF5E3IYF0dtzTGpJ4uboHLvqd7EijBgSNWc6Qxo2WSZQqTtzLbuo9Ql2SFXK0i1y2/77rLayP/7sW1+/KGI4mtDu0MRCXsf9F6SHLGT+Id7O4d1MjIyVF8uezXUnSu2tWzxCdUQgBodfpAvagnhN/P7ycuvuRhv+UjxBeXKqoOEeloEZrnWdZCKwSpZte+J9lSuQLNGClbkV4RUVpRQrFjwvlY1aYDUe/XlROqAgeKLFwXypBWSCNydZE9HF9ohVPxdGuu56hSpb/ki2DvPv2rgQyVsa7p2tJ4IRJ2A74vvFGY/bLcZR4OuI8g2XHEHx9avNwyPN1myUOl364bo59qSG8yDYmwlkvNRBFsAFbXCtNSTfmDSORx1kTHFYSbFvXYpl03QoyPpFv3rXRntwVHMXO800Nw62cLS7lAopvyBdOBDMAo7WlTxZ1BMt/BNNwv/+60IJstOpEkKHnseigfb0Y/WgemTG850Us4fjat44ndRKtKIW4vhn0U6OEuoZRK3w87tY/DSXjb1zJe/Nv/UspSPKwRqH3nEXH3LGLlGYmmben6vg9VTIvudP3xmjEsfZRXZWwvK+KO4PZVyGxPo7Zbj+IFrY1+M6/IzMIqjlcat0mb3LKXnvvCA7nLG8jJN2RjsRad0zCpfr/CE7fi7bJWanmUxAUI5EjPslLY0eiJd7ChLLVLRbqf9YYwxGxD6PSjkO1yPaqrbm2zSgJkOh2xuwvi6Zg21Tq53t0Nw42MLRWjwVksofWvlE30BQSi9jVF6IRo8UW/177nCZhDyJ+To/1TF6ATwgDqMCL+4O8EB/SQ1hfa6PVgSjkDPeets0m0xZrpNN8ZqD+UIe6ztaYYqhOpJ2JptUIhs1JPe0x74yZrk1kixycM8oYqsEr68FO4tYlj171xHXYeYZVLJWNBhTpjm11o9yBkVFnRY3fJpAXrlGi08af8w4btHI2kwo6xKSKpKUaH6bsLxfY4KJk7aZJGlKbVCV4UnXlWT7tvysT+fxfs9YuGcKS7h7Wmm4zi84f9NMvBhrMEuH7z4XNH3q0mufJ/R6zROh3uTVwtpRkpqLplsaXZnOucaLt1MjaTGurfY0my941ieir0OfJ/mGtpUuX3YxsKpoR67ZZLpWNmmkwB55U2PnTqwk31/3PEczaqUbHC+Y50ZJlCf9t6kQZJI2ce5cMwWUIZPCkP6yol+JxMyvVTRKK0VTmjsL4Kwf0huzwziXbcLi8esIrtbyiTgiHDUkZ6sSOrMPjn7NmFRGtOFYGI6o71tHa51LnJjruP+aQ36Q+eAOn+w2tB+zZ5gqj+bnEWRhbzu6fnfQNV68nRpJi3FttadZtOB5PaJ8H9dvKrVUpVS0XHL1LCkjlofmMsVaKRu1qH42RpKyTCMF9h6bKroiZS3e5L7NR6iYegcc7tpn4togycMXIwqwT+/5AdVAkTeiZoqjflpJp8pKo2E5JyQOo9IhOoIbbasMhM5A7Je+XVf6GqmaaWxE9TmSl9t5eApZo30tOOdyjMRMts8vGAdDbvKn+Vm1OK3zwTuz1qCQ5yDV0ULmsNN+O6UFJQfd/h3SnS7cv1r5dkg57MoLlOjgsrxxnqG4crKNr8lkaiKb4ZrCMJuyvBxZaPQp6wJleg3JZoAqB6gu8XmzRrAZOJ6vTamhu2Ou+mKOMT2WrQ2Kbpj3KM4NHMlGUFAcgUfTrtrqW7kh40IjevNDajyXiw7ZyXzvBoH/2VRXcucFaR0Gqs/VUXM98VVhbzCW9M3LeXFa5wO1MpNwudYGFZMb3e179NbmpP+bEJlw/yZjSbbAabltadSW0mLEky3Pq+doKBtlgEqovSB9/KLD2FWal2wU8HOk7tsFj91wdt5kF8kVXXtLZnGUKUqiaEurklNlrrpsQdql3jUbIttVC4cFOzbyeH3vNmw5A8D19yzWSEp43qthGEQ3zRuOZwsxENURzAWIEy26smBwdZ7HyuGqtymkITzo6tPoJOJJnTacVB7p0ycWpSq+77LHmJ6krL6WEJ4m9b4ImqJOxWpZ6NL0xOblspFxMLCO6eZf2+RP9HofsMhtmRT8ffm17fYnhb9vxrC31D7Vy/1jvVf4ELwcUqd8fe15Uy2nghPSmfqd56ku/rpl76vrZb8n4s/3YVlf6+FS43Swpz+r9I8ry+tPINeVWS2kTb+oy5oZh1sQh6ewRmeqAVbZUTKA73vE/N+EZda4k6+Tjcj/onnCE2yZ/zuvYj4TJ49F9dD4Sb41x7ePcFLRXzUew3LvJw/HPDCa3K+0r9Ugu2TciDGp60wK4WnZmkb/7/DX/09wKucmjx34fqSFOgV6uwVe0AzIBoC/l99bkG6TNJ8O5fPHAdkA8Ffyb/8f0gAAALz8NyIHAAAArQLjAAAAwAHGAQAAgAOMAwAAAAcYBwAAAA4wDgAAABxgHAAAADjAOAAAAHCAcQAAAOAA4wAAAMABxgEAAIADjAMAAAAHGAcAAAAOMA4AAAAcYBwAAADkIPo/qOBYxl3NhLAAAAAASUVORK5CYII=
答案::image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXYAAAAvCAYAAAD3qOHuAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAA1XSURBVHhe7Zw7dsI6EECHtxZMwWEFZAVAQ0WbDkpo6CjT0ZgSOtpUNLFXEFbAocDeC29GkkGy5S+G8PzmnqOEjy3rMzOa0YfWFQGGYRimMfyj/jMMwzANgQ07wzBMw2DDzjAM0zDYsDMMwzQMNuwMwzANgw07wzBMw2DDzjAM0zDYsDMMwzQMNuwMwzANgw07wzBMw2DDzjAM0zDYsDN/jA+zVgtaMz/2+q94hzIwzGP87wy7v9lAqF7rpH2eTwibWdV7GfAPsMN//a5jvv4r3qEMefgb2FgFLoTwpYJY4/Pepk7N4DHDHm7g46OkUfN99IniSC+pupOExnWTfrNhtM8LcNSD/NmHEqYQLt/4edm6CNrQgar3Ku8wK5VslHDzIe77sGtJJtG9lMRj/Zk9H+r31szSj+UJLyf824fJqG28/iveoQx5hJdvWDiR7OoEsHby+t7iiGA/3+TNmmzPQsIf+MTnFRNRfO5H+rWP1Smifn2qBavNezL0s71E4Pbp53urpb57DVQ+V29qv8ZI06unLpd412nis/JlmsYziAjca1/l703VdfTZ1L16HpZc+74KtzxLY6+3JLi6/YplEn1Q5F56ht6G93uCANslqy+pbLdOrw61HajG01//Fa8sg3hW1J4lnulN+1fX1vbUX7oupiHk3ZYHyqN2/12uA5QH8ZEB6Wc/ygQvkK/iMqWnKT7TkhHycJ0ET9InG4V1jKBywb2tXsDNY2/Pf8nIW1IAbr8PWCbLdyr9ztFvVQy22nceTNH7Sd67BadAfJVepihR/ti8nny/Hcj7ErRHMOmf4KI90v8B2G/nMBhgyYMzgLuEtNv/c4g+2FrqI72mu/fThvlv1JbUz+pjpN2WPYrCqL7XUuBir3bBqcmpnY7vJdVf/xWvKIM/a8Hw5AKqumhTD4Y53mSIjh/1mw8HWMFctL0ZqfqHHUxXmi4ioU3PhD4c4Ryo9zcGsN0DfCrv9jCOdKqN8iAu0PBhvejBBD6lJ+w4KhKOZIp0cwpo+JTcSF3tGBnVWKcXIiLbwxjrZNMxG9iu2AZ7bKsqkXQlsNFzoJEuZTTNgzyDlNFWeOO377JG2iSB52EqM2LekV6IJzx18izII7F5CzbPrVpUk1VGOZLb76OU1u5596UlmV/gkueksrph8Wiwja1eRka/lgOfiVGTzEd/XYRyMlOMsmWoiJDdWN8KLzor8pPyKuRJ3H/vV3GPul//PEp5nqLheROYv14OKfdmW9Nnt2ti1xOJPKm/EjJTd52q6lMJqJzxypbAaLcn8lTDTsZR7wDjPTbQ/Tu7knpogNUrQyiEoN1aJ7t8wkAnOhgFURlz+/dKsGgAkNkIksIqoTxsnZXfiVnGqVq7p5UxH3qeLMutn4w+0qjNsD9CVtu9N0Lm0oxcqsBY5IH6QV1vncoQhjG/jYTMYN42PaAkvjPKlW5AxWVauWQZ1PeJutVdp/r1yaQOmXuN3BZcPD2mLGxkgeHVbnoP1TANabsBxn9Fs3EuX9ASi5IYyqzO4GgLdtGuBX/mwKI3gU4QqsU/c1FvsFWhIGoTKhO4+G/qduG0k6HoYIzN7HqADry8ToWQIhofDAqGWo+wg6FqHzNhvY7qkmchFkH158myUAi+78h+Oi4crUwqOQuUiAKo/M3wU04H/cki1luUh/QC//U6xvQCTWF0evhvdzDktxBYr0N3r6YyiiF0Ratzb3Wf9kRDTzb49v53RQWLoPY6oBKpKVaalpt6eJ2csj19YVt+0jSn1Bx//Q2TSLdS50otVKiT5In6RDumpuMHbcIAxtMdfD15SqagYadOFJNvspEK7AAJN19wcpcwv82TS4O5ws4t01f9yUheP1ii4MTmyWfSCF2juXKkb5srp1V/mhP7nUOH3nfm8IsCeTpsYHPownJ0gUs03xhegPZFvIqxpkBmCiAIfm/zjkWnFYPz0W6MMSVsVxvbIXoeDXwIKTTpXxsHtbaxXhJL+5G4Pg3qm2gAOH7/JOWligF7gLrKI/KxtG08pc6lKvmybad0urTIYcp4PhfYrAFlOAAxXZ2FNpA7aOXoadEtu+G97PSd/r4lPLI7o/0Wxup1nMkeZQP1LKB2QoFzugCLz7I7xkrUKUbd+qRDO6bq2AZLzuQxucBRKyW2O0aLIjgy0/Y+7PB0J8eH9fcEVvpiAY12/S5UbxZ6ftQx0pO8L+6kc1voiC7surCkl2TUSDqXc2i30dxH2hSc4fhQObNQ3mGkMK0hDHUFMpIDjmO+zncqyRu0LFaLxc4pdJ10aaZFKjTrAAd6HkY9mhGwJlosyxjgZaSkFmSPZ7iLMfUjfu4+6vmUo67y3CLAnPRb3tWsSAfm6Ni02w5c0PFKyIguy9pATl45CoR0mhDdQ4977NGgL4kWUimKJznAwXI3RJnQPWKUQ1oYVjonFz99mBXeEly0Ts/WJxNymnqdmvr1dCnYFtWosI9dKQLKxe5gbxl/doAxjtqD+Qp6i08xhWNb3S6P7EjhbbgedDHsy+4cH35gfzfq6LkPF9/wE7XoYK4GChSTs/TixKgcRQkWbN4wOTSGh6MSldMkGhxVQoPrxhVIhLXaZ1paZhhmAXmD/QkktmCrwWqU3NogQSP+dcJ4Cvt0jIbLo1DxZ3T35inZyqbvhrLShtGELKnphYbkjo3KmfWkpzzEoNsSdmcKRH3leQZkOAB6kG47lDGN6mpMiaFs7TEKHdZzviAf21SM/IaidZjI3TV37x9tAgb9P4nCPVKnJ+tTDIqoTuXCqXQSU3H1UsGwE6pBbe4yGs/DONoG5EC3j4IKaDh2at66EtHITJN3ytvAvGmAIeOePjU0gM5ZM8QipNQFKVo3QIXvnoXBzxuV+5btf1J+zM8oUTkzBQEN7mKYt3bh0/kGQbQFMY3w5xsVKmVQyhAkuq+3WgJGzQLySp/ncWI0dx6XnjtNesrx7XQq5YVwCaqVpzIYHdKMdbVQPBaNiUhMQ+VdhTJTMdlQe65gO5fRwd37R5uAEcM80T011qlmfYrTFosgj1PXlE4WFQ17OqGz1KZHaADYAqwX0PPMPZ/yhF8Bzmv4UAb9er1PxUgof/QUYAGfKb15MwgkMH1t37Awxvf8aDbmez3LHIBoX30Zg5d3PUUxfTe2QCTCWk2pVHiZHzbKfcUry/OyBUkpYhl7KE4qFvMMpTLc90yLaK608a2PR8vz8By7cHbwXyIUD0GoRNnFOSMf2i+t6RlFauplHsWnYiJSpmJ+KOpLqQHJTZH5j4p1qlefLAzG0LOtz5QiBOl/FbcjVajdsMdHQZrjHoJXznDodJc48scNuo4M1yY5c18+DS7RVJCYelBz7RHUaTv0TGyLr09B7hrqoSYYgpISOua1nz8bAsQGz4isKCTcXFIV0TBicr5JvhaHM8ZUhVKQLNyjub+nSnken2NHeV2hoTxqU4JE+APfaLFqPxz1lJCfBiEVLcWmYs6dCxxuRjTm/ZPcjC8ld9dZsNapXn2yM4Dl5DvViSxCuPmERS86jGUSYijxaNNE1G7YDXCEdtAbtIXHZb1fIjI0JCyGobKGeCakkGOxMIiJvIzjAtaaYaJ5QTFRs1iXtVeViAzxdkRzkWW3ksagtYPUwZOUsE/rZElwgFvDKNWwGUZMn68UDxrQbtB8nK4IrU+HGT5rX32Ar4t3KI/Y4YUe700AQ9h8okxi+76iPKRHn1j3PbYAyR06waZ8jFS7iMgM9QUHdXPACeBMJ4/VO52uMxenLCO5Mbx/yvS2rlUvtepTBmS36ARpJY8/wx6Sk+EMhxV/cypJAcOOnVg0ntMhodB3o2RRcIuhNDQeeCgoVRRAbCe7Tcd4AGo+jhqVBF0K4kksyFXquKJQxBAZYrFTQW0lLTWXqUi0c3RMWyE8wZQFOXz21tCyslvtChDNKZ+6sHyGRpflLcoj16jEzwiQ4Ww58D0JCuhK1kJjEjE1YVhs+SNZX91AOFXt+VLIXVzsblG3tt3VKJp/gFPGBoNyPFonpE59KgAZd3ISS9mIHHvYHk2Ew/H4BhMFdloOdFKq3IktdO7yj93qJ9IoJU7ipZ1uo1Ojts9lsp6UVMeVk9/J037xz9HLUPkVqzfVN6+6EnW6MOPU5v3ZtmSeWBPXWh6cyKNQ4bSTefG+SU1F2gf7sVjjvIh3K09RUk5pGrKk5Cutf+iHum4/1qUTvy8tyfw8V3smnc7GcrjiJzqS8kCymN7cj9ZJfVeTPpUl9YfL4lCdXixzhQy7W6j0hGzocnXAe9x6Ki1+Q0a9lqjBIVGgSFgKdkwm9ZW/DDSYWAcxDftvwqTxjHpQOz//+HRx3q08/0HQSbLpd5o8elNu77+gRX9w9GKYWhBzhd8TCH47sG59Qfd22u9veLfyMMwreO7iKfP/5Egnkw8wztzN9ELerTwM82TYY2cYhmkY7LEzDMM0DDbsDMMwDYMNO8MwTMNgw84wDNMw2LAzDMM0DDbsDMMwDYMNO8MwTMNgw84wDNMw2LAzDMM0DDbsDMMwDYMNO8MwTMNgw84wDNMw2LAzDMM0DDbsDMMwjQLgX4O4W2ONiZe9AAAAAElFTkSuQmCC
答案:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安徽陽(yáng)光采購(gòu)服務(wù)平臺(tái)有限責(zé)任公司社會(huì)招聘1人(第二次)考前自測(cè)高頻考點(diǎn)模擬試題完整參考答案詳解
- 2025湖北荊州市石首市面向城市社區(qū)黨組織書(shū)記專項(xiàng)招聘事業(yè)崗位人員5人模擬試卷及完整答案詳解一套
- 2025江西數(shù)字文化產(chǎn)業(yè)有限公司誠(chéng)聘數(shù)字技術(shù)部智能化工程師1人模擬試卷及答案詳解(名校卷)
- 2025福建新華發(fā)行(集團(tuán))有限責(zé)任公司漳州轄區(qū)分公司招聘考前自測(cè)高頻考點(diǎn)模擬試題及完整答案詳解
- 2025江西上饒市廣信區(qū)公安局招聘編制外聘用人員25人模擬試卷帶答案詳解
- 2025年春季北燃實(shí)業(yè)集團(tuán)校園招聘考前自測(cè)高頻考點(diǎn)模擬試題及參考答案詳解
- 2025年揚(yáng)中市市級(jí)機(jī)關(guān)公開(kāi)遴選考試真題
- 2025年核工業(yè)四一七醫(yī)院招聘(22人)考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(奪冠)
- 2025年哈爾濱道里區(qū)工程社區(qū)衛(wèi)生服務(wù)中心招聘若干名考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(全優(yōu))
- 2025福建泉州市洛江區(qū)公辦學(xué)校專項(xiàng)招聘編制內(nèi)新任教師9人(二)模擬試卷及1套完整答案詳解
- 資陽(yáng)產(chǎn)業(yè)投資集團(tuán)有限公司第三輪一般員工市場(chǎng)化招聘筆試參考題庫(kù)附答案解析
- 人教版2024年新版七年級(jí)上冊(cè)英語(yǔ)Starter Units 1-3綜合測(cè)試卷(含答案)
- JJG 693-2011可燃?xì)怏w檢測(cè)報(bào)警器
- DISC性格測(cè)評(píng)問(wèn)卷及分析
- 高乳酸與休克
- 日本蠟燭圖技術(shù)完整版
- 蘇教版數(shù)學(xué)四年級(jí)上冊(cè)《解決問(wèn)題的策略》課件
- LY/T 1571-2000國(guó)有林區(qū)營(yíng)造林檢查驗(yàn)收規(guī)則
- 內(nèi)分泌和代謝疾病總論課件
- 教科版四年級(jí)(上)科學(xué)1.1聽(tīng)聽(tīng)聲音課課練習(xí)題(含答案)
- 金剛經(jīng)講義江味農(nóng)居士遺著
評(píng)論
0/150
提交評(píng)論