廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題含解析_第1頁
廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題含解析_第2頁
廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題含解析_第3頁
廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題含解析_第4頁
廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省湛江雷州市2024年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列4個點,不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)2.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.433.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π4.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現(xiàn)已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.5.下列各式屬于最簡二次根式的有()A. B. C. D.6.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′7.在平面直角坐標系xOy中,若點P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>58.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°9.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.10.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°11.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.12.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉(zhuǎn)30°后得到Rt△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算的結(jié)果等于______________________.14.計算:的結(jié)果是_____.15.若反比例函數(shù)y=的圖象位于第一、三象限,則正整數(shù)k的值是_____.16.已知x3=y17.已知拋物線y=,那么拋物線在y軸右側(cè)部分是_________(填“上升的”或“下降的”).18.有一個計算程序,每次運算都是把一個數(shù)先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結(jié)果是____________(用含字母x和n的代數(shù)式表示).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,點B、F、C、E在同一直線上,AB⊥BE,DE⊥BE,連接AC、DF,且AC=DF,BF=CE,求證:AB=DE.20.(6分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達式;在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.21.(6分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關(guān)于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請在圖上畫出這條對稱軸.22.(8分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.23.(8分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點,點是劣弧的中點,,,求的長.24.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關(guān)系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.25.(10分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.求從袋中隨機摸出一球,標號是1的概率;從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.26.(12分)某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:根據(jù)圖中提供的信息,解答下列問題:(1)補全頻數(shù)分布直方圖(2)求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù)(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)27.(12分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結(jié)果即可).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據(jù)得k=xy=-6,所以只要點的橫坐標與縱坐標的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.2、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.3、A【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答.4、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.5、B【解析】

先根據(jù)二次根式的性質(zhì)化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;

故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關(guān)鍵.6、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應(yīng)為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.7、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關(guān)系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.8、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).9、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關(guān)鍵.10、C【解析】

根據(jù)非負數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.11、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.12、A【解析】

先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)完全平方式可求解,完全平方式為【詳解】【點睛】此題主要考查二次根式的運算,完全平方式的正確運用是解題關(guān)鍵14、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減15、1.【解析】

由反比例函數(shù)的性質(zhì)列出不等式,解出k的范圍,在這個范圍寫出k的整數(shù)解則可.【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整數(shù),∴k的值是:1.故答案為:1.【點睛】本題考查了反比例函數(shù)的性質(zhì):當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.16、7【解析】

由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.17、上升的【解析】

∵拋物線y=x2-1開口向上,對稱軸為x=0(y軸),

∴在y軸右側(cè)部分拋物線呈上升趨勢.故答案為:上升的.【點睛】本題考查的知識點是二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握二次函數(shù)的性質(zhì).18、【解析】試題分析:根據(jù)題意得;;;根據(jù)以上規(guī)律可得:=.考點:規(guī)律題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析【解析】試題分析:證明三角形△ABC△DEF,可得=.試題解析:證明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.20、(1);(2)P(,0);(3)E(,﹣1),在.【解析】

(1)將點A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點P的坐標為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點坐標為(﹣,﹣1),即可求解.【詳解】(1)∵點A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達式為;(2)∵A(,1),AB⊥x軸于點C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設(shè)點P的坐標為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負半軸上的點,∴m=﹣,∴點P的坐標為(,0);(3)點E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點E在該反比例函數(shù)的圖象上.考點:待定系數(shù)法求反比例函數(shù)解析式;反比例函數(shù)系數(shù)k的幾何意義;坐標與圖形變化-旋轉(zhuǎn).21、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1,見解析.【解析】

(1)根據(jù)軸對稱圖形的性質(zhì),找出A、B、C的對稱點A1、B1、C1,畫出圖形即可;(2)根據(jù)平移的性質(zhì),△ABC向右平移6個單位,A、B、C三點的橫坐標加6,縱坐標不變;(1)根據(jù)軸對稱圖形的性質(zhì)和頂點坐標,可得其對稱軸是l:x=1.【詳解】(1)由圖知,A(0,4),B(﹣2,2),C(﹣1,1),∴點A、B、C關(guān)于y軸對稱的對稱點為A1(0,4)、B1(2,2)、C1(1,1),連接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6個單位,∴A、B、C三點的橫坐標加6,縱坐標不變,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1.【點睛】本題考查了軸對稱圖形的性質(zhì)和作圖﹣平移變換,作圖時要先找到圖形的關(guān)鍵點,分別把這幾個關(guān)鍵點按照平移的方向和距離確定對應(yīng)點后,再順次連接對應(yīng)點即可得到平移后的圖形.22、(1)證明見解析(2)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點C是的中點,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【點睛】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質(zhì),掌握切線的判定定理、直徑所對的圓周角是直角是解題的關(guān)鍵.23、(1)詳見解析;(2)【解析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點,根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結(jié)OA,

∵OA=OB,OC⊥AB,

∴∠AOC=∠BOC,

又∠BAD=∠BOC,

∴∠BAD=∠AOC

∵∠AOC+∠OAC=90°,

∴∠BAD+∠OAC=90°,

∴OA⊥AD,

即:直線AD是⊙O的切線;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點,

∵BE是直徑,

∴∠EAB=90°,

∴OC∥AE,

∵OB=,

∴BE=13

∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4

在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,

在直角△PEB中,BE=13,PB2=BE2-PE2,

PB==3.【點睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.24、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).25、(1);(2)這個游戲不公平,理由見解析.【解析】

(1)由把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機摸出一球,標號是1的概率為:;(2)這個游戲不公平.畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球的標號之和為偶數(shù)的有5種情況,兩次摸出的球的標號之和為奇數(shù)的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個游戲不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.26、略;m=40,1.4°;870人.【解析】試題分析:根據(jù)A組的人數(shù)和比例得出總?cè)藬?shù),然后得出D組的人數(shù),補全條形統(tǒng)計圖;根據(jù)C組的人數(shù)和總?cè)藬?shù)得出m的值,根據(jù)E組的人數(shù)求出E的百分比,然后計算圓心角的度數(shù);根據(jù)D組合E組的百分數(shù)總和,估算出該校的每周的課外閱讀時間不小于6小時的人數(shù).試題解析:(1)補全頻數(shù)分布直方圖,如圖所示.(2)∵10÷10%=10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論