中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)中國(guó)政法大學(xué)《數(shù)據(jù)庫(kù)技術(shù)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析消費(fèi)者的購(gòu)買行為與廣告投放之間的關(guān)聯(lián),數(shù)據(jù)量龐大且變量眾多。以下哪種關(guān)聯(lián)分析方法在處理這種復(fù)雜的商業(yè)數(shù)據(jù)時(shí)更能發(fā)現(xiàn)有價(jià)值的關(guān)聯(lián)規(guī)則?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上算法效果相同2、在進(jìn)行數(shù)據(jù)分析時(shí),需要考慮數(shù)據(jù)的隱私保護(hù)。假設(shè)要分析醫(yī)療數(shù)據(jù),但又要確?;颊叩碾[私不被泄露。以下哪種數(shù)據(jù)隱私保護(hù)技術(shù)在處理這種敏感數(shù)據(jù)時(shí)更能有效地平衡數(shù)據(jù)分析需求和隱私保護(hù)要求?()A.數(shù)據(jù)匿名化B.數(shù)據(jù)加密C.差分隱私D.以上技術(shù)結(jié)合使用3、在數(shù)據(jù)分析的預(yù)測(cè)模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹集成模型,如隨機(jī)森林B.神經(jīng)網(wǎng)絡(luò),具有強(qiáng)大的擬合能力C.支持向量回歸,處理小樣本D.堅(jiān)持使用簡(jiǎn)單的線性模型4、在數(shù)據(jù)分析中,對(duì)于時(shí)間序列數(shù)據(jù),例如股票價(jià)格、氣溫變化等,需要進(jìn)行預(yù)測(cè)和趨勢(shì)分析。以下哪種方法可能在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)較好?()A.ARIMA模型B.決策樹C.樸素貝葉斯D.以上都不是5、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程。假設(shè)一家電商企業(yè)想要通過(guò)數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測(cè)分析6、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問(wèn)題是一個(gè)重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問(wèn)題的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)挖掘結(jié)果的錯(cuò)誤和不可靠B.數(shù)據(jù)質(zhì)量問(wèn)題可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)解決C.數(shù)據(jù)質(zhì)量問(wèn)題只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無(wú)關(guān)D.數(shù)據(jù)質(zhì)量問(wèn)題需要在數(shù)據(jù)挖掘的整個(gè)過(guò)程中進(jìn)行關(guān)注和處理7、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯(cuò)誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來(lái)表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測(cè)D.聚類分析的算法有多種,如k-means聚類、層次聚類等8、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)分析師需要與不同部門進(jìn)行溝通合作。以下關(guān)于跨部門溝通的描述,錯(cuò)誤的是:()A.明確各部門的需求和期望有助于提高合作效率B.數(shù)據(jù)分析師應(yīng)該主導(dǎo)整個(gè)項(xiàng)目,無(wú)需考慮其他部門的意見(jiàn)C.建立良好的溝通機(jī)制可以及時(shí)解決問(wèn)題和避免沖突D.理解不同部門的業(yè)務(wù)知識(shí)對(duì)于數(shù)據(jù)分析的結(jié)果應(yīng)用至關(guān)重要9、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性10、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)用于存儲(chǔ)和管理大量的數(shù)據(jù)。假設(shè)要構(gòu)建一個(gè)企業(yè)的數(shù)據(jù)倉(cāng)庫(kù),以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)倉(cāng)庫(kù)通常采用多維數(shù)據(jù)模型,便于進(jìn)行數(shù)據(jù)分析和查詢B.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)經(jīng)過(guò)清洗、轉(zhuǎn)換和整合,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉(cāng)庫(kù)只適合存儲(chǔ)結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化數(shù)據(jù)無(wú)法處理D.可以通過(guò)建立數(shù)據(jù)集市,為不同部門和業(yè)務(wù)提供定制的數(shù)據(jù)服務(wù)11、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問(wèn)題的實(shí)際情況無(wú)關(guān)D.可以通過(guò)控制樣本量和顯著性水平來(lái)平衡檢驗(yàn)的靈敏度和特異性12、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個(gè)圖表中區(qū)分不同的類別,以下哪個(gè)關(guān)于顏色選擇的原則是重要的?()A.對(duì)比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識(shí)度D.以上都是13、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的作用,不準(zhǔn)確的是()A.可以幫助醫(yī)療機(jī)構(gòu)分析患者的病歷數(shù)據(jù),優(yōu)化治療方案,提高醫(yī)療質(zhì)量B.通過(guò)對(duì)醫(yī)療影像數(shù)據(jù)的分析,輔助疾病的診斷和篩查C.利用傳感器收集的實(shí)時(shí)健康數(shù)據(jù)進(jìn)行監(jiān)測(cè)和預(yù)警,實(shí)現(xiàn)個(gè)性化的醫(yī)療服務(wù)D.數(shù)據(jù)分析在醫(yī)療領(lǐng)域的應(yīng)用還處于初級(jí)階段,對(duì)醫(yī)療實(shí)踐的影響非常有限14、數(shù)據(jù)分析中的回歸分析用于建立變量之間的定量關(guān)系。假設(shè)要建立一個(gè)線性回歸模型來(lái)預(yù)測(cè)氣溫對(duì)空調(diào)銷量的影響。如果模型的殘差呈現(xiàn)出明顯的非線性模式,可能表明什么?()A.應(yīng)該使用非線性回歸模型來(lái)改進(jìn)預(yù)測(cè)效果B.數(shù)據(jù)中存在異常值,需要進(jìn)行處理C.模型的擬合效果很好,無(wú)需進(jìn)一步改進(jìn)D.收集的數(shù)據(jù)不足以進(jìn)行有效的分析15、在數(shù)據(jù)分析中,生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)要分析患者的生存時(shí)間與治療方案的關(guān)系,以下關(guān)于生存分析的描述,哪一項(xiàng)是不正確的?()A.可以計(jì)算生存曲線來(lái)直觀展示不同組患者的生存情況B.風(fēng)險(xiǎn)比(HazardRatio)用于比較不同組的風(fēng)險(xiǎn)程度C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒(méi)有應(yīng)用價(jià)值D.考慮刪失數(shù)據(jù)是生存分析的一個(gè)重要特點(diǎn)16、在數(shù)據(jù)分析項(xiàng)目中,需要對(duì)兩個(gè)不同來(lái)源的數(shù)據(jù)集進(jìn)行整合和融合,例如一個(gè)是銷售數(shù)據(jù),另一個(gè)是客戶信息數(shù)據(jù)。由于兩個(gè)數(shù)據(jù)集的格式和字段可能不一致,以下哪種方法可能有助于順利完成數(shù)據(jù)整合?()A.手動(dòng)匹配和轉(zhuǎn)換B.使用數(shù)據(jù)清洗工具C.建立數(shù)據(jù)倉(cāng)庫(kù)D.以上都是17、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)有很多種,其中星型架構(gòu)是一種常用的架構(gòu)。以下關(guān)于星型架構(gòu)的描述中,錯(cuò)誤的是?()A.星型架構(gòu)由事實(shí)表和維度表組成B.事實(shí)表中包含了大量的詳細(xì)數(shù)據(jù),維度表中包含了對(duì)事實(shí)表的描述信息C.星型架構(gòu)的數(shù)據(jù)查詢效率較高,適用于大規(guī)模數(shù)據(jù)集D.星型架構(gòu)的設(shè)計(jì)和維護(hù)比較復(fù)雜,需要專業(yè)的技術(shù)和知識(shí)18、當(dāng)處理高維度的數(shù)據(jù)時(shí),以下哪種方法可以用于降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是19、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過(guò)可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過(guò)不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢(shì)20、數(shù)據(jù)分析中的特征選擇用于篩選出對(duì)目標(biāo)變量最有預(yù)測(cè)能力的特征。假設(shè)要分析一個(gè)包含數(shù)百個(gè)特征的數(shù)據(jù)集,以預(yù)測(cè)某種疾病的發(fā)生概率。以下哪種特征選擇方法在處理這種高維度數(shù)據(jù)時(shí)更能有效地篩選出關(guān)鍵特征?()A.過(guò)濾式特征選擇B.包裹式特征選擇C.嵌入式特征選擇D.以上方法效果相同21、在數(shù)據(jù)挖掘中,K-Means聚類算法是一種常見(jiàn)的聚類方法。以下關(guān)于K-Means算法的缺點(diǎn),不正確的是?()A.對(duì)初始聚類中心敏感B.容易陷入局部最優(yōu)解C.不能處理非球形的簇D.計(jì)算復(fù)雜度高22、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則修正錯(cuò)誤數(shù)據(jù)D.利用機(jī)器學(xué)習(xí)算法預(yù)測(cè)缺失值23、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)的預(yù)處理和特征工程可能會(huì)占用大量時(shí)間。假設(shè)你面臨時(shí)間緊迫的情況,以下關(guān)于時(shí)間分配的策略,哪一項(xiàng)是最明智的?()A.跳過(guò)預(yù)處理和特征工程,直接進(jìn)行建模分析B.減少數(shù)據(jù)清洗的工作,重點(diǎn)放在特征工程上C.合理分配時(shí)間,確保預(yù)處理和特征工程的質(zhì)量,以提高模型性能D.把大部分時(shí)間花在模型選擇和調(diào)優(yōu)上,忽略數(shù)據(jù)準(zhǔn)備24、對(duì)于一個(gè)具有多個(gè)變量的數(shù)據(jù)集合,若要進(jìn)行降維處理,以下哪種方法可能會(huì)被使用?()A.主成分分析B.線性判別分析C.獨(dú)立成分分析D.以上都是25、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評(píng)估。以下關(guān)于結(jié)果解釋和評(píng)估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問(wèn)題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評(píng)估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評(píng)價(jià)和判斷C.結(jié)果解釋和評(píng)估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評(píng)估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無(wú)需考慮數(shù)據(jù)的質(zhì)量和可靠性26、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇有一定的技巧。以下關(guān)于顏色使用的描述,錯(cuò)誤的是:()A.避免使用過(guò)多的顏色,以免造成視覺(jué)混亂B.顏色的亮度和飽和度差異越大,對(duì)比越明顯C.可以隨意選擇顏色,只要自己覺(jué)得美觀就行D.對(duì)于重要的數(shù)據(jù),可以使用醒目的顏色突出顯示27、數(shù)據(jù)分析中的回歸分析用于研究變量之間的關(guān)系。假設(shè)要探究廣告投入與產(chǎn)品銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線性回歸一定能準(zhǔn)確反映兩者的關(guān)系,無(wú)需考慮其他因素B.不考慮數(shù)據(jù)的正態(tài)性和方差齊性,直接進(jìn)行回歸分析C.在進(jìn)行回歸分析前,對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和假設(shè)檢驗(yàn),選擇合適的回歸模型,并評(píng)估模型的擬合優(yōu)度和顯著性D.只關(guān)注回歸方程的系數(shù),不考慮模型的殘差和預(yù)測(cè)能力28、在數(shù)據(jù)分析中,社交網(wǎng)絡(luò)分析用于研究人與人之間的關(guān)系。假設(shè)要分析一個(gè)社交網(wǎng)絡(luò)中用戶的影響力,以下關(guān)于社交網(wǎng)絡(luò)分析的描述,哪一項(xiàng)是不正確的?()A.中心性指標(biāo),如度中心性、介數(shù)中心性和接近中心性,可以衡量節(jié)點(diǎn)在網(wǎng)絡(luò)中的重要性B.社區(qū)發(fā)現(xiàn)算法可以將網(wǎng)絡(luò)劃分為不同的社區(qū),揭示潛在的群體結(jié)構(gòu)C.社交網(wǎng)絡(luò)分析只關(guān)注節(jié)點(diǎn)之間的連接關(guān)系,不考慮節(jié)點(diǎn)的屬性信息D.可以通過(guò)傳播模型來(lái)模擬信息在社交網(wǎng)絡(luò)中的傳播過(guò)程29、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的性能優(yōu)化是提高數(shù)據(jù)分析效率的關(guān)鍵。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以從硬件、軟件和數(shù)據(jù)三個(gè)方面入手B.硬件方面可以通過(guò)升級(jí)服務(wù)器、增加內(nèi)存和存儲(chǔ)等方式提高性能C.軟件方面可以通過(guò)優(yōu)化數(shù)據(jù)庫(kù)設(shè)計(jì)、調(diào)整查詢語(yǔ)句和使用索引等方式提高性能D.數(shù)據(jù)方面可以通過(guò)增加數(shù)據(jù)量和提高數(shù)據(jù)質(zhì)量來(lái)提高性能30、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在線教育平臺(tái)積累了大量的學(xué)生學(xué)習(xí)行為數(shù)據(jù),如何通過(guò)這些數(shù)據(jù)來(lái)改進(jìn)教學(xué)方法、優(yōu)化課程設(shè)計(jì)以及提升學(xué)生的學(xué)習(xí)效果?請(qǐng)?jiān)敿?xì)論述數(shù)據(jù)分析的流程、方法和可能遇到的挑戰(zhàn),并結(jié)合實(shí)際案例進(jìn)行分析。2、(本題5分)在保險(xiǎn)行業(yè),客戶的投保數(shù)據(jù)、理賠數(shù)據(jù)和風(fēng)險(xiǎn)評(píng)估數(shù)據(jù)等大量存在。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像保險(xiǎn)欺詐檢測(cè)、精準(zhǔn)定價(jià)模型等,優(yōu)化保險(xiǎn)業(yè)務(wù)運(yùn)營(yíng),降低風(fēng)險(xiǎn),同時(shí)思考在數(shù)據(jù)隱私保護(hù)嚴(yán)格、法律法規(guī)限制和模型解釋性要求方面的挑戰(zhàn)及應(yīng)對(duì)措施。3、(本題5分)在房地產(chǎn)行業(yè),數(shù)據(jù)分析可用于市場(chǎng)趨勢(shì)預(yù)測(cè)、房?jī)r(jià)評(píng)估、客戶需求分析等。論述如何運(yùn)用數(shù)據(jù)分析輔助房地產(chǎn)投資決策、項(xiàng)目開發(fā)規(guī)劃、銷售策略制定,并分析政策對(duì)房地產(chǎn)數(shù)據(jù)分析的影響。4、(本題5分)在文化娛樂(lè)產(chǎn)業(yè),影視作品的播放數(shù)據(jù)、觀眾評(píng)論數(shù)據(jù)等不斷積累。探討如何利用數(shù)據(jù)分析方法,比如熱門題材預(yù)測(cè)、作品口碑分析等,指導(dǎo)文化產(chǎn)品的創(chuàng)作和推廣,同時(shí)研究在數(shù)據(jù)樣本代表性、文化價(jià)值觀傳遞和版權(quán)保護(hù)方面所面臨的困難及解決途徑。5、(本題5分)在金融市場(chǎng)的信用衍生品定價(jià)中,如何運(yùn)用數(shù)據(jù)分析評(píng)估信用風(fēng)險(xiǎn),確定合理的定價(jià)模型和參數(shù)。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的版本控制和數(shù)據(jù)溯源,解釋其重要性和實(shí)現(xiàn)的方法,并舉例說(shuō)明在實(shí)際項(xiàng)目中的應(yīng)用。2、(本題5分)解釋什么是強(qiáng)化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用,說(shuō)明其與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)的區(qū)別,并舉例分析。3、(本題5分)在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)分析面臨哪些挑戰(zhàn)?請(qǐng)?jiān)敿?xì)說(shuō)明

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論