蘭州博文科技學院《機器學習與大數(shù)據(jù)處理》2023-2024學年第二學期期末試卷_第1頁
蘭州博文科技學院《機器學習與大數(shù)據(jù)處理》2023-2024學年第二學期期末試卷_第2頁
蘭州博文科技學院《機器學習與大數(shù)據(jù)處理》2023-2024學年第二學期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁蘭州博文科技學院《機器學習與大數(shù)據(jù)處理》

2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在特征工程中,獨熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是2、在進行遷移學習時,以下關(guān)于遷移學習的應(yīng)用場景和優(yōu)勢,哪一項是不準確的?()A.當目標任務(wù)的數(shù)據(jù)量較少時,可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓練的模型進行遷移學習B.可以將在一個領(lǐng)域?qū)W習到的模型參數(shù)直接應(yīng)用到另一個不同但相關(guān)的領(lǐng)域中C.遷移學習能夠加快模型的訓練速度,提高模型在新任務(wù)上的性能D.遷移學習只適用于深度學習模型,對于傳統(tǒng)機器學習模型不適用3、某研究團隊正在開發(fā)一個用于預(yù)測股票價格的機器學習模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時間序列數(shù)據(jù)?()A.長短時記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能4、假設(shè)正在進行一個圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成5、在使用深度學習進行圖像分類時,數(shù)據(jù)增強是一種常用的技術(shù)。假設(shè)我們有一個有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強的描述,哪一項是不正確的?()A.可以通過隨機旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對圖像進行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強的方法C.數(shù)據(jù)增強可以有效地防止模型過擬合,但會增加數(shù)據(jù)標注的工作量D.過度的數(shù)據(jù)增強可能會導致模型學習到與圖像內(nèi)容無關(guān)的特征,影響模型性能6、假設(shè)正在研究一個語音合成任務(wù),需要生成自然流暢的語音。以下哪種技術(shù)在語音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語音轉(zhuǎn)換模型C.語音韻律模型D.以上技術(shù)都很重要7、在評估機器學習模型的性能時,通常會使用多種指標。假設(shè)我們有一個二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標的描述,哪一項是不正確的?()A.準確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實際正例樣本數(shù)的比例C.F1分數(shù)是準確率和召回率的調(diào)和平均值,綜合考慮了模型的準確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好8、在進行數(shù)據(jù)預(yù)處理時,異常值的處理是一個重要環(huán)節(jié)。假設(shè)我們有一個包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計學方法,如三倍標準差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對異常值進行修正或替換,使其更符合數(shù)據(jù)的整體分布9、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設(shè)一個機器人要通過強化學習來學習如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略10、某研究需要對音頻信號進行分類,例如區(qū)分不同的音樂風格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用11、機器學習在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機器學習在自然語言處理中的說法中,錯誤的是:機器學習可以用于文本分類、情感分析、機器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學習模型等。那么,下列關(guān)于機器學習在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學習模型在自然語言處理中表現(xiàn)出色,但需要大量的訓練數(shù)據(jù)和計算資源D.機器學習在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和發(fā)展12、在進行模型選擇時,除了考慮模型的性能指標,還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個候選模型。以下關(guān)于模型選擇的描述,哪一項是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對于一些對可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實際應(yīng)用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性13、假設(shè)我們正在訓練一個神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓練數(shù)據(jù)量不足B.模型過于復(fù)雜,導致過擬合C.學習率設(shè)置過高D.以上原因都有可能14、假設(shè)要對一個復(fù)雜的數(shù)據(jù)集進行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對非線性結(jié)構(gòu)不敏感C.t-分布隨機鄰域嵌入(t-SNE),能夠保持數(shù)據(jù)的局部結(jié)構(gòu),但計算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點和分析目的選擇合適的降維策略15、在進行深度學習中的圖像生成任務(wù)時,生成對抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項是不準確的?()A.GAN由生成器和判別器組成,它們通過相互對抗來提高生成圖像的質(zhì)量B.生成器的目標是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實的還是由生成器生成的D.GAN的訓練過程穩(wěn)定,不容易出現(xiàn)模式崩潰等問題16、在機器學習中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機森林D.支持向量機17、在進行機器學習模型訓練時,過擬合是一個常見的問題。過擬合意味著模型在訓練數(shù)據(jù)上表現(xiàn)很好,但在新的、未見過的數(shù)據(jù)上表現(xiàn)不佳。為了防止過擬合,可以采取多種正則化方法。假設(shè)我們正在訓練一個神經(jīng)網(wǎng)絡(luò),以下哪種正則化技術(shù)通常能夠有效地減少過擬合?()A.增加網(wǎng)絡(luò)的層數(shù)和神經(jīng)元數(shù)量B.在損失函數(shù)中添加L1正則項C.使用較小的學習率進行訓練D.減少訓練數(shù)據(jù)的數(shù)量18、在一個圖像識別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠遠少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進行優(yōu)化19、在一個強化學習問題中,智能體需要在環(huán)境中通過不斷嘗試和學習來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法20、在一個語音合成任務(wù)中,需要將輸入的文本轉(zhuǎn)換為自然流暢的語音。以下哪種技術(shù)或模型常用于語音合成?()A.隱馬爾可夫模型(HMM)B.深度神經(jīng)網(wǎng)絡(luò)(DNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),如LSTM或GRUD.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋機器學習中多層感知機(MLP)的結(jié)構(gòu)。2、(本題5分)說明機器學習在文本分類中的應(yīng)用。3、(本題5分)解釋如何在機器學習中處理時空數(shù)據(jù)。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用KNN算法對空氣質(zhì)量的等級進行分類。2、(本題5分)通過SVM算法對衛(wèi)星圖像中的土地利用類型進行分類。3、(本題5分)通過婦產(chǎn)科學數(shù)據(jù)保障母嬰健康和處理婦產(chǎn)科疾病。4、(本題5分)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論