




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
UnravelingMeta-Learning:UnderstandingFeature
RepresentationsforFew-ShotTasks
HarichandanaVejendla
(50478049)
1
2
Definitions
?Meta-Learning:Meta-learningdescribesmachinelearningalgorithmsthatacquireknowledgeandunderstandingfromtheoutcomeofothermachinelearningalgorithms.Theylearnhowtobest
combinethepredictionsfromothermachine-learningalgorithms.
?Few-shotLearning:Few-ShotLearningisaMachineLearningframeworkthatenablesapre-trainedmodeltogeneralizeovernewcategoriesofdatausingonlyafewlabeledsamplesperclass.
?FeatureExtraction:Featureextractionisaprocessofdimensionalityreductionthatinvolvestransformingrawdataintonumericalfeaturesthatcanbeprocessed.
?Featureclustering:Featureclusteringaggregatespointfeaturesintogroupswhosemembersaresimilartoeachotherandnotsimilartomembersofothergroups.
?FeatureRepresentation:RepresentationLearningorfeaturelearningisthesubdisciplineofthe
machinelearningspacethatdealswithextractingfeaturesorunderstandingtherepresentationofadataset.
3
Introduction
?TransferLearning:Pre-trainingamodelonlargeauxiliarydatasetsandthenfine-tuningtheresultingmodelsonthetargettask.Thisisusedforfew-shotlearningsinceonlyafewdatasamplesareavailableinthetarget
domain.
?Transferlearningfromclassicallytrainedmodelsyieldspoorperformanceforfew-shotlearning.Recently,few-shotlearninghasbeenrapidlyimprovedusingmeta-learningmethods.
?Thissuggeststhatthefeaturerepresentationslearnedbymeta-learningmustbefundamentallydifferentfromfeaturerepresentationslearnedthroughconventionaltraining.
?Thispaperunderstandsthedifferencesbetweenfeatureslearnedbymeta-learningandclassicaltraining.
?Basedonthis,thepaperproposessimpleregularizersthatboostfew-shotperformanceappreciably.
4
Meta-LearningFramework
?Inthecontextoffew-shotlearning,theobjectiveofmeta-learningalgorithmsistoproduceanetworkthatquicklyadaptstonewclassesusinglittledata.
?Meta-learningalgorithmsfindparametersthatcanbefine-tunedinafewoptimizationstepsandonafewdatapointsinordertoachievegoodgeneralization.
?Thetaskischaracterizedasn-way,k-shotifthemeta-learningalgorithmmustadapttoclassifydatafromTiafterseeingkexamplesfromeachofthenclassesinTi.
Algorithm
5
6
AlgorithmDescription
?Meta-learningschemestypicallyrelyonbi-leveloptimizationproblemswithaninnerloopandanouterloop.
?Aniterationoftheouterloopinvolvesfirstsamplinga“task,”whichcomprisestwosetsoflabeleddata:thesupportdata,Tis,andthequerydata,Tiq.
?Intheinnerloop,themodelbeingtrainedisfine-tunedusingthesupportdata.
?Fine-tuningproducesnewparametersθi,thatareafunctionoftheoriginalparametersandsupportdata.
?Weevaluatethelossonthequerydataandcomputethegradientsw.r.ttheoriginalparametersθ.Weneedtounrollthefine-tuningstepsandbackpropagatethroughthemtocomputethegradients.
?Finally,theroutinemovesbacktotheouterloop,wherethemeta-learningalgorithmminimizeslossonthequerydatawithrespecttothepre-fine-tunedweights.Basemodelparametersareupdatedusingthe
gradients.
7
Meta-LearningAlgorithms
Avarietyofmeta-learningalgorithmsexist,mostlydifferinginhowtheyarefine-tunedusingthesupportdataduringtheinnerloop:
?MAML:Updatesallnetworkparametersusinggradientdescentduringfine-tuning.
?R2-D2andMetaOptNet:Last-layermeta-learningmethods(onlytrainthelastlayer).Theyfreezethefeatureextractionlayers(featureextractor’sparametersarefrozen)duringtheinnerloop.Onlythelinearclassifierlayeristrainedduringfine-tuning.
?ProtoNet:Last-layermeta-learningmethod.Itclassifiesexamplesbytheproximityoftheirfeaturestothoseofclasscentroids.Theextractedfeaturesareusedtocreateclasscentroidswhichthen
determinethenetwork’sclassboundaries.
8
Few-ShotDatasets
?Mini-ImageNet:ItisaprunedanddownsizedversionoftheImageNetclassificationdataset,
consistingof60,000,84×84RGBcolorimagesfrom100.These100classesaresplitinto64,16,and20classesfortraining,validation,andtestingsets,respectively.
?CIFAR-FSdataset:samplesimagesfromCIFAR-100.CIFAR-FSissplitinthesamewayasmini-ImageNetwith60,00032×32RGBcolorimagesfrom100classesdividedinto64,16,and20
classesfortraining,validation,andtestingsets,respectively.
ComparisonbetweenMeta-LearningandClassicalTrainingModels
?DatasetUsed:1-shotmini-ImageNet
?Classicallytrainedmodelsaretrainedusingcross-entropylossandSGD.
?Commonfine-tuningproceduresareusedforbothmeta-learnedandclassically-trainedmodelsforafaircomparison
?Resultsshowthatmeta-learningmodelsperformbetterthanclassicaltrainingmodelsonfew-shotclassification.
?Thisperformanceadvantageacrosstheboardsuggeststhatmeta-learnedfeaturesarequalitativelydifferentfromconventionalfeaturesandfundamentallysuperiorforfew-shotlearning.
9
10
ClassClusteringinFeatureSpace
MeasuringClusteringinFeatureSpace:
Tomeasurefeatureclustering(FC),weconsidertheintra-classtointer-classvarianceratio:
φi,j-featurevectorcorrespondingtodatapointinclassiintrainingdata
μi-meanoffeaturevectorsinclassi
μ-meanacrossallfeaturevectors
C-numberofclasses
N-numberofdatapointsperclass
Where,fθ(xi,j)=φi,jfθ-featureextractor
xi,j-trainingdatainclassi
Lowvaluesofthisfractioncorrespondtocollectionsoffeaturessuchthatclassesarewell-separatedandahyperplaneformedbychoosingapointfromeachoftwoclassesdoesnotvarydramaticallywiththechoiceofsamples.
WhyClusteringisimportant?
?Asfeaturesinaclassbecomespreadoutandtheclassesarebroughtclosertogether,theclassificationboundariesformedbysamplingone-shotdataoftenmisclassifylargeregions.
?Asfeaturesinaclassarecompactedandclassesmovefarapartfromeachother,theintra-classtointer-classvarianceratiodrops,andthedependenceoftheclassboundaryonthechoiceofone-shotsamplesbecomesweaker.
11
ComparingFeatureRepresentationsofMeta-LearningandClassicallyTrainedModels
?Threeclassesarerandomlychosenfromthetestset,and100samplesaretakenfromeachclass.Thesamplesarethenpassedthroughthefeatureextractor,andtheresultingvectorsareplotted.
?Becausefeaturespaceishigh-dimensional,weperformalinearprojectionontothefirsttwocomponentvectorsdeterminedbyLDA.
?Lineardiscriminantanalysis(LDA)projectsdataontodirectionsthatminimizetheintra-classtointer-classvarianceratio.
?Theclassicallytrainedmodelmashesfeaturestogether,whilethemeta-learnedmodelsdrawtheclassesfartherapart.
12
13
HyperplaneInvariance
Thisregularizerwithonethatpenalizesvariationsinthemaximum-marginhyperplaneseparatingfeaturevectorsin
oppositeclasses
HyperplaneVariationRegularizer:
DatpointsinclassA:x1,x2
DatapointsinclassB:y1,y2
fθ-featureextractor
fθ(x1)-fθ(y1):determinesthedirectionofthemaximum
marginhyperplaneseparatingthetwopointsinthefeaturespace
?Thisfunctionmeasuresthedistancebetweendistancevectorsx1?y1andx2?y2relativetotheirsize.
?Inpractice,duringabatchoftraining,wesamplemanypairsofclassesandtwosamplesfromeachclass.Then,wecomputeRHVonallclasspairsandaddthesetermstothecross-entropyloss.
?WefindthatthisregularizerperformsalmostaswellasFeatureClusteringRegularizerandconclusivelyoutperformsnon-regularizedclassicaltraining.
14
Experiments
?FeatureclusteringandHyperplanevariationvaluesarecomputed.
?Thesetwoquantitiesmeasuretheintra-classtointer-classvarianceratioandinvarianceofseparatinghyperplanes.
?Lowervaluesofeachmeasurementcorrespondtobetterclassseparation.
?OnbothCIFAR-FSandmini-ImageNet,themeta-learnedmodelsattainlowervalues,indicatingthatfeaturespaceclusteringplaysaroleintheeffectivenessofmeta-learning.
15
Experiments
?Weincorporatetheseregularizersintoastandardtrainingroutineoftheclassicaltrainingmodel.
?Inallexperiments,featureclusteringimprovestheperformanceoftransferlearningandsometimesevenachieveshigherperformancethanmeta-learning
16
WeightClustering:FindingClustersofLocalMinimaforTaskLossesinParameterSpace
?SinceReptiledoesnotfixthefeatureextractorduringfine-tuning,itmustfindparametersthatadapteasilytonewtasks.
?WehypothesizethatReptilefindsparametersthatlieveryclosetogoodminimaformanytasksandis,therefore,abletoperformwellonthesetasksafterverylittlefine-tuning.
?ThishypothesisisfurthermotivatedbythecloserelationshipbetweenReptileandconsensusoptimization.
?Inaconsensusmethod,anumberofmodelsareindependentlyoptimizedwiththeirowntask-specificparameters,andthetaskscommunicateviaapenaltythatencouragesalltheindividualsolutionsto
convergearoundacommonvalue.
17
ConsensusFormulation:
?Reptilecanbeinterpretedasapproximatelyminimizingtheconsensusformulation
?Reptiledivergesfromatraditionalconsensusoptimizeronlyinthatitdoesnotexplicitlyconsiderthequadraticpenaltytermwhenminimizingfor?θp.
18
ConsensusOptimizationImprovesReptile
?WemodifyReptiletoexplicitlyenforceparameterclusteringaroundaconsensusvalue.
?Wefindthatdirectlyoptimizingtheconsensusformulationleadstoimprovedperformance.
?duringeachinnerloopupdatestepinReptile,wepenalizethesquareddistancefromtheparametersforthecurrenttasktotheaverageoftheparametersacrossalltasksinthecurrentbatch.
?ThisisequivalenttotheoriginalReptilewhenα=0.Wecallthismethod“Weight-Clustering.
ReptilewithWeightClusteringRegularizer
n-numberofmeta-trainingsteps
k-numberofiterationsorstepstoperformwithineachmeta-trainingstep
19
20
Resultsofweightclustering
?WecomparetheperformanceofourregularizedReptilealgorithmtothatoftheoriginalReptilemethodaswellasfirst-orderMAML(FOMAML)andaclassicallytrainedmodelofthesamearchitecture.We
testthesemethodsonasampleof100,0005-way1-shotand5-shotmini-ImageNettasks
?ReptilewithWeight-Clusteringachieveshigherperformance.
21
Resultsofweightclustering
?ParametersofnetworkstrainedusingourregularizedversionofReptiledonottravelasfarduringfine-tuningatinferenceasthosetrainedusingvanillaReptile
?Fromthese,weconcludethatourregularizerdoesindeedmovemo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025機械工程師職稱考試題及參考答案
- 2025年汽車修理工(裝調(diào)工)高級技師理論知識競賽試題與答案
- 2025食品安全管理員培訓(xùn)考試試題及答案
- 2025康復(fù)醫(yī)學(xué)考試試題(含參考答案)
- 2024年急救設(shè)備操作試題(附答案)及設(shè)備相關(guān)應(yīng)急預(yù)案考試題(附答案)
- 2024年湖南省常德市醫(yī)療三嚴(yán)三基理論考試題庫及答案
- 2025年護(hù)理資格知識:膀胱腫瘤術(shù)后化療灌注常用藥物理論考試試題及答案
- 標(biāo)準(zhǔn)防護(hù)用品使用課件
- 標(biāo)準(zhǔn)圓柱齒輪參數(shù)課件
- 柴油發(fā)動機燃油供給課件
- 無人機應(yīng)聘面試簡歷
- 船廠安全用電培訓(xùn)課件
- 智慧能源與運維云平臺解決方案
- 專題08 任務(wù)型閱讀-牛津譯林版八年級英語第一學(xué)期期末專項復(fù)習(xí)
- 2024廣西繼續(xù)教育公需科目(高質(zhì)量共建“一帶一路”)真題
- 金融企業(yè)理財師培訓(xùn)手冊
- 再生障礙性貧血診斷與治療中國指南(2024年版)解讀
- 旅游景區(qū)維穩(wěn)應(yīng)急預(yù)案
- 交通運輸行業(yè)隱患舉報獎勵制度
- 2024年基金應(yīng)知應(yīng)會考試試題
- DB15T3644-2024 國有企業(yè)陽光采購規(guī)范
評論
0/150
提交評論