




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市寶山區(qū)名校2024年中考數學模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數是()A.15° B.22.5° C.30° D.45°2.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)3.如圖,已知,,則的度數為()A. B. C. D.4.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)5.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=16.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數為()A.125° B.75° C.65° D.55°7.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.8.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.9.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元10.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數約95000000,正向1億挺進,95000000用科學計數法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109二、填空題(本大題共6個小題,每小題3分,共18分)11.為了節(jié)約用水,某市改進居民用水設施,在2017年幫助居民累計節(jié)約用水305000噸,將數字305000用科學記數法表示為________.12.化簡:_____________.13.分解因式:9x3﹣18x2+9x=.14.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.15.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.16.若a2﹣2a﹣4=0,則5+4a﹣2a2=_____.三、解答題(共8題,共72分)17.(8分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.如圖是根據這組數據繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?若該校九年級共有200名學生,如圖是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統(tǒng)計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數約為多少?18.(8分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點A,將直線y=12(1)設點B的橫坐標分別為b,試用只含有字母b的代數式表示k;(2)若OA=3BC,求k的值.19.(8分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數達2678個,志愿者人數達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調查小組根據平臺數據進行了抽樣問卷調查,過程如下:(1)收集、整理數據:從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數據整理在如下的頻數分布表中,請你補充其中的數據:志愿服務時間ABCDEF頻數34107(2)描述數據:根據上面的頻數分布表,小明繪制了如下的頻數直方圖(圖1),請將空缺的部分補充完整;(3)分析數據:①調查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據上述信息估計九年級200名團員中參加此次義務勞動的人數約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.20.(8分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,F的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數關系式(3)若點M在直線OP上,在平面內是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。21.(8分)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).22.(10分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?23.(12分)解方程式:-3=24.某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.2、C【解析】
過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數的解析式,根據解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數的綜合問題,涉及全等三角形的性質與判定,反比例函數的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.3、B【解析】分析:根據∠AOC和∠BOC的度數得出∠AOB的度數,從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.4、A【解析】
作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質、坐標與圖形性質、全等三角形的判定與性質;熟練掌握正方形的性質,證明三角形全等得出對應邊相等是解決問題的關鍵.5、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗6、D【解析】
延長CB,根據平行線的性質求得∠1的度數,則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質,解題的關鍵是熟練的掌握平行線的性質.7、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數的定義、等腰三角形的性質及勾股定理.8、C【解析】
利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.9、A【解析】
設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.10、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學記數法—表示較大的數二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:305000用科學記數法表示為:故答案為12、【解析】
根據分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式的運算法則.13、9x【解析】試題分析:首先提取公因式9x,然后利用完全平方公式進行因式分解.原式=9x(-2x+1)=9x.考點:因式分解14、﹣18【解析】
要求代數式a3b﹣2a2b2+ab3的值,而代數式a3b﹣2a2b2+ab3恰好可以分解為兩個已知條件ab,(a﹣b)的乘積,因此可以運用整體的數學思想來解答.【詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當a﹣b=3,ab=﹣2時,原式=﹣2×32=﹣18,故答案為:﹣18.【點睛】本題考查了因式分解在代數式求值中的應用,熟練掌握因式分解的方法以及運用整體的數學思想是解題的關鍵.15、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).16、-3【解析】試題解析:∵即∴原式故答案為三、解答題(共8題,共72分)17、(1)50(2)36%(3)160【解析】
(1)根據條形圖的意義,將各組人數依次相加即可得到答案;(2)根據條形圖可直接得到最喜歡籃球活動的人數,除以(1)中的調查總人數即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全??側藬档陌俜直龋缓笄蟪鋈5目側藬?;再根據最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數.【詳解】(1)該校對名學生進行了抽樣調查.本次調查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數占被調查人數的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數約為人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?8、(1)k=12b2+4b;(2)9【解析】試題分析:(1)分別求出點B的坐標,即可解答.(2)先根據一次函數平移的性質求出平移后函數的解析式,再分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,再設A(3x,32x),由于OA=3BC,故可得出B(x,1試題解析:(1)∵將直線y=12∴平移后直線的解析式為y=12∵點B在直線y=12∴B(b,12∵點B在雙曲線y=kx∴B(b,kb令12b+4=得k=(2)分別過點A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點F,設A(3x,32∵OA=3BC,BC∥OA,CF∥x軸,∴CF=13∵點A、B在雙曲線y=kx∴3b?32b=1∴k=3×1×32×1=9考點:反比例函數綜合題.19、(1)7,9;(2)見解析;(3)①在15~20小時的人數最多;②35;(4).【解析】
(1)觀察統(tǒng)計圖即可得解;(2)根據題意作圖;(3)①根據兩個統(tǒng)計圖解答即可;②根據圖1先算出不足10小時的概率再乘以200人即可;(4)根據題意畫出樹狀圖即可解答.【詳解】解:(1)C的頻數為7,E的頻數為9;故答案為7,9;(2)補全頻數直方圖為:(3)①八九年級共青團員志愿服務時間在15~20小時的人數最多;②200×=35,所以估計九年級200名團員中參加此次義務勞動的人數約為35人;故答案為35;(4)畫樹狀圖為:共有9種等可能的結果數,其中兩人恰好選在同一個服務點的結果數為3,所以兩人恰好選在同一個服務點的概率==.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖與樹狀圖法.20、(1);(2);(3)【解析】
(1)聯立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數關系式;當時,重合部分為直角梯形面積,求出S與a函數關系式.(3)根據(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是【點睛】本題考查一次函數綜合題、勾股定理以及逆定理、矩形的性質、全等三角形的判定和性質、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.21、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數法求二次函數解析式進而得出答案即可;
(2)首先求出直線OB的解析式為y=x,進而將二次函數以一次函數聯立求出交點即可;
(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關于直線OB的對稱點A′的坐標是(0,6),根據軸對稱性質和三線合一性質得出∠A′BO=∠ABO,設直線A′B的解析式為y=k2x+6,過點(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點N在直線A′B上,∴設點N(n,),又點N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合題意,舍去)∴N點的坐標為(﹣,).如圖1,將△NOB沿x軸翻折,得到△N1OB1,則N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直線y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴點P1的坐標為().將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點P2(),綜上所述,點P的坐標是()或().【點睛】運用了翻折變換的性質以及待定系數法求一次函數和二次函數解析式以及相似三角形的判定與性質等知識,利用翻折變換的性質得出對應點關系是解題關鍵.22、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.【解析】
(1)根據拋物線的對稱軸與矩形的性質可得點A的坐標,根據待定系數法可得拋物線的解析式;(2)先根據勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據待定系數法可得直線AC的解析式,根據S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- β-CL-Ala-13C3-15N-TFA-生命科學試劑-MCE
- mPEG-pALD-MW-1000-生命科學試劑-MCE
- Clothianidin-d3-13C1-生命科學試劑-MCE
- 9-Methyl-Adenine-d3-生命科學試劑-MCE
- 法律職業(yè)資格考試法律職業(yè)試卷一練習題及答案
- 電氣巡檢員試題及答案
- 2025設備巡檢工考試題及答案
- 職業(yè)五:社會志愿者面試題
- 新醫(yī)學領域招聘:淮安醫(yī)療面試實戰(zhàn)試題集
- 養(yǎng)護知識培訓班課件
- 2025年貴州省中考英語真題含答案
- T/CBMCA 039-2023陶瓷大板巖板裝修鑲貼應用規(guī)范
- 一體機使用培訓-課件
- #20kV設備交接和預防性試驗規(guī)定
- GB 18613-2020 電動機能效限定值及能效等級
- 職工食堂總體經營服務方案
- 高一研究性課題
- CAAP2008X功能概述PPT課件
- 煤礦膏體充填開采項目建議書范文
- MAG、MIG焊培訓教材ppt課件
- 1000以內自然數數數表
評論
0/150
提交評論