




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Federated
Learning姜育剛,馬興軍,吳祖煊/2017/04/federated-learning-collaborative.htmlRecap:week10口 CommonTamperingandDeepfakes口 ImageManipulationDetection口 VideoManipulationDetectionThisWeek口 FederatedLearning口 PrivacyinFederatedLearning口 RobustnessinFederatedLearning口 ChallengesandFutureResearchTraditionalMachineLearningDataModelDataandmodelinonesingleplaceTraditionalMachineLearningDataModelWhat
if
we
need
more
data?DataGatheringUsingmultipleGPUsFederatedLearning:Whatisit?Google:FederatedLearning:CollaborativeMachineLearningwithoutCentralizedTrainingDataFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfNextwordpredictiononmobile.FederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfHorizontalFL(橫著切):samefeatures,differentsamplesFederatedLearning:TypesVerticalFL(縱著切):samesamples,differentfeaturesFederatedLearning:TypesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfFederatedLearning:TypesFederatedTransferLearning:differentsamples,differentfeaturesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmsFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmshttps:///projects/distributed-learning-and-collaborative-learning-1/overview/SplitLearningvsFederatedLearningFederatedLearningFrameworksHE:homomorphicencryption SS:secretSharingObjectivesandUpdatesinFLGlobalobjectiveLocalobjective:LocalUpdates:GlobalAggregation(e.g.FedAvg):FederatedLearning–MajorChallengesExpensiveCommunicationSystemsHeterogeneityStatisticalHeterogeneityPrivacyandSecurityConcernsFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfFederatedLearning-HorizontalFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfHFLcanfurtherbedividedinto…?PrivacyandSecurityThreatsLyuetal.“Privacyandrobustnessinfederatedlearning:Attacksanddefenses.”TNNLS,2022.SummaryofThreatModelsFLserver(insider)FLparticipants(insider)Eavesdroppers(outsider)Serviceusers(outsider)□InsidervsOutsider □InsiderAttacksByzantine:theworstattacker,knowseverythingaboutthesystem,doesnotobeytheprotocol,sendarbitraryupdates,evencolludewitheachother.Sybil:takingoverthenetworkbysimulatingmanydummyparticipants,out-votethehonestusersSemi-honestvsMaliciousSemi-honestsettingMalicioussettingTraining-timevsTest-timeStealprivatedata,stealmodel,corruptthemodel(trainingtime)Adversarialattack(testtime)SummaryofAttacksExistingattacksagainstserver-basedFLPoisoningAttacksDatapoisoningvsmodel(weight)poisoningDataPoisoningAttacksinTraditionalML□Dirty-labelPoisoningLabelflipping(onlychangelabels)Dirty-labelbackdoor(changeinputsandlabels)Clean-labelPoisoningClean-labelbackdoor(onlychangeinputs)DataPoisoningAttacksinTraditionalMLAsimplepatterncanmakethemodeltomemorizeFLPoisoningAttacks–ModelPoisoningMaincharacteristics:ChangelocalmodelweightsMostlyByzantineattack(attackercandoanythingtotheweights)CanattackByzantine-robustaggregationmechanismssuchasKrumandcoordinate-wisemedianinsteadofweightedaveragingKrum:PrivacyAttacksForeverycommunicationround,localclientshavethechancetoreverseengineerothers’gradients.Fromthereversedgradients,reverseengineer:RepresentationsMembershipPropertiesSensitiveattributesInVFL:featuresPrivacyAttacks–InferenceAttacksDeepmodelsundertheGAN:informationleakagefromcollaborativedeeplearning,CCS2017InferenceclassrepresentationsusingGANsCIFAR-10horseclassReconstructAlice’sfaceimagePrivacyAttacks–InferenceAttacksComprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning,S&P,2019Inferencemembership:Passiveattacks:observeandinference.Activeattacks:influencethetargetmodelinordertoextractmoreinformation.WeaknessofFL:FLcreatesanenvironmentfor(almost)white-boxattacksPrivacyAttacks–InferenceAttacksOtherinferenceattacks:inferringproperties,trainingdata,labels...DeepLeakagefromGradient(DLG)ImprovedDeepLeakagefromGradient(iDLG)…Defenses–PrivacyDefenseHomomorphic
Encryption:RSAEl
GamalPaillier…Homomorphic
properties:Allows
computation
directly
onencrypted
data(“可算不可見”)Needs
to
be
designed
for
eachalgorithmA
side
note:
attacking
encrypted
FL
is
challengingbut
still
possible!Defenses–PrivacyDefense2.
SecureMultipartyComputation(SMC,Yaosharing):SecureML(data-independentofflinephase+fastonlinephase)Offlinemultiplicationtriplets,truncate,sharingCharacteristics:HighlevelprivacyHighcomputationandcommunicationcostYao'sMillionaires'problemProtocolsforSecureComputations,AndrewChi-ChihYao,1982,UCBerkeleyDefenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesofDP:LocalDPCentralizedDPDistributedDPDefenses–PrivacyDefenseDataflowofstatisticsunderLDP2.DifferentialPrivacy(DP):Defenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesoffrequencyestimationDefenses–PrivacyDefense2.DifferentialPrivacy(DP):Real-worldapplications.Vanilla
FLM:ADPmechanismCentralized
DPM:ADPmechanismLocal
DPM:ADPmechanismE:encryptionD:decryptionDistributed
DPDefenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Setting:nparticipants,fareByzantine,with??≥????+??Atcommunicationroundt,?? ?? ??serverreceives{????,????,…,????}foreach????:??selecttheclosest(L2distance)n-f-2intoset????compute??????????????=∑?? ??∈???? ????????????? ????????????=???=argmin{?????????????? ,…,??????????????}updateglobalparameter:????.??=????+??????????Blanchardetal.“Machinelearningwithadversaries:Byzantinetolerantgradientdescent.”NeurIPS,2017.Defenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Blanchard
et
al.
“Machine
learning
with
adversaries:
Byzantine
tolerant
gradient
descent.”
NeurIPS,
2017.紅色:攻擊梯度藍色:真實梯度黑色:本地梯度黑色曲線:損失函數(shù)Defenses–ByzantineDefenseMorerobustaggregationmethods:Multi-Krum=Krum+Averaging=Krumrobustness+increasedconvergencespeedcoordinate-wisemedian,coordinate-wisetrimmedmeanmedianisnotgoodforconvergenceBulyan=Krum+trimmedmedianMedianandgeometric-median(RobustFederatedAggregation)RFA:approximategeometricmedian(notrobusttoByzantineattacks)Defenses–ByzantineDefenseModelpoisoningattackcanbreakKrumandcoordinate-wisemedianAnalyzingfederatedlearningthroughanadversariallens,ICML2019.??/:adversarialtargetclassr:numberofpoisonedsamples??0:cleandata1???2:estimationoftheglobalparametersReversedgradientsfromthelastround.Defenses–SybilDefenseFromtraditionalML:RejectonNegativeInfluence(RONI)WithacleanvalidationdatasetItrequiresuniformdistributioninnon-IIDsetting,notgood.FoolsGold:Sybilsharethesameobjective,driftsawayfromtheoriginalobjectiveCoreidea:cosinesimilarityFoolsGold:MitigatingSybilsinFederatedLearningPoisoning,/abs/1808.04866Defenses–SybilDefenseDistributedbackdoorattack(DBA)canbypassbothRFAandFoolsGold.DBA:Distributed
Backdoor
Attacks
against
Federated
Learning,
ICLR
2020.
Defenses
-
SummaryDefenseagainstFederatedLearningPoisoning.n:numberofparticipants.RemainingChallengesandFutureResearch□ CurseofdimensionalityLargermodelsaremorevulnerableSharingweights/gradientsmaynotbeagoodidea□ WeaknessesofcurrentattacksGANattackassumestheclassofdataisfromonesingleparticipantDLG/iDLGworkwithsecond-ordergradientmethod(expensive)andsmallminibatch-gradients(B=8)□ Vulnerabilitytofreeriders:pretendtohavedatabutnot.□ WeaknessofCurrentPrivacy-preservingTechniquesSecureaggregationismorevulnerabletopoisoningattacks
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆江西省八所重點中學(xué)化學(xué)高三第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2025年鄉(xiāng)村文化旅游項目資金申請成功案例與經(jīng)驗總結(jié)報告
- 2025年醫(yī)療影像設(shè)備市場與技術(shù)發(fā)展報告
- 2026屆云南省玉溪市澄江縣一中化學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含答案
- 聚焦2025年:汽車共享平臺運營策略與用戶出行行為洞察報告
- 尾礦處理技術(shù)升級與2025年生態(tài)環(huán)境修復(fù)效果評估報告
- 交通運輸行業(yè)人才需求預(yù)測與培養(yǎng)模式創(chuàng)新實踐研究報告
- 2025年藥品綠色生產(chǎn)技術(shù)國際合作與交流研究報告
- 《合理利用能源》課件
- 新解讀《GB-T 38908 - 2020家用反滲透及納濾膜元件耐氯性測試方法》
- 甲狀腺基本解剖培訓(xùn)課件
- 雞屠宰車間通風(fēng)系統(tǒng)技術(shù)方案
- 網(wǎng)絡(luò)安全漏洞修復(fù)
- 旅游創(chuàng)意策劃方案
- 管網(wǎng)工程分包合同模板
- 基因?qū)用婷庖叻磻?yīng)
- DB11T 1076-2023 居住建筑裝飾裝修工程質(zhì)量驗收標(biāo)準(zhǔn)
- DB44∕T 902-2011 華潤楠育苗技術(shù)規(guī)程
- TCSRME 034-2023 隧道巖溶堵水注漿技術(shù)規(guī)程
- 創(chuàng)業(yè)維艱(中文版)
- JBT 7248-2024 閥門用低溫鋼鑄件技術(shù)規(guī)范(正式版)
評論
0/150
提交評論