




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆焦作市九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.用配方法解方程時,配方后所得的方程為()A. B. C. D.2.如圖,l1∥l2∥l3,若,DF=6,則DE等于()A.3 B.3.2 C.3.6 D.43.的半徑為5,圓心O到直線l的距離為3,則直線l與的位置關(guān)系是A.相交 B.相切 C.相離 D.無法確定4.半徑為10的⊙O和直線l上一點A,且OA=10,則直線l與⊙O的位置關(guān)系是()A.相切 B.相交 C.相離 D.相切或相交5.對于非零實數(shù),規(guī)定,若,則的值為A. B. C. D.6.﹣3的絕對值是()A.﹣3 B.3 C.- D.7.下列二次函數(shù)的開口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-58.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+59.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則的正切值為()A. B. C. D.10.如圖,在中,,,,點為上任意一點,連結(jié),以,為鄰邊作平行四邊形,連結(jié),則的最小值為()A. B. C. D.11.若兩個相似三角形的周長之比為1∶4,則它們的面積之比為()A.1∶2 B.1∶4 C.1∶8 D.1∶1612.下列事件中,是隨機事件的是()A.任意畫兩個直角三角形,這兩個三角形相似 B.相似三角形的對應(yīng)角相等C.⊙O的半徑為5,OP=3,點P在⊙O外 D.直徑所對的圓周角為直角二、填空題(每題4分,共24分)13.如圖,點在函數(shù)的圖象上,直線分別與軸、軸交于點,且點的橫坐標為4,點的縱坐標為,則的面積是________.14.如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點,已知∠C=90°,⊙O半徑長為1cm,BC=3cm,則AD長度為__cm.15.小明和小紅在太陽光下行走,小明身高1.5m,他的影長2.0m,小紅比小明矮30cm,此刻小紅的影長為______m.16.已知扇形的面積為4π,半徑為6,則此扇形的圓心角為_____度.17.如果一元二次方程經(jīng)過配方后,得,那么a=________.18.如圖,在4×4的正方形網(wǎng)絡(luò)中,已將部分小正方形涂上陰影,有一個小蟲落到網(wǎng)格中,那么小蟲落到陰影部分的概率是____.三、解答題(共78分)19.(8分)山西是我國釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長的歷史進程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價是元,經(jīng)調(diào)查發(fā)現(xiàn),當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶(售價不高于元)(1)售價為多少時可以使每天的利潤最大?最大利潤是多少?(2)要使每天的利潤不低于元,每瓶竹葉青酒的售價應(yīng)該控制在什么范圍內(nèi)?20.(8分)某校網(wǎng)絡(luò)學(xué)習平臺開通以后,王老師在平臺上創(chuàng)建了教育工作室和同學(xué)們交流學(xué)習.隨機抽查了20天通過訪問王老師工作室學(xué)習的學(xué)生人數(shù)記錄,統(tǒng)計如下:(單位:人次)2020281520253020121330251520101020172426“希望騰飛”學(xué)習小組根據(jù)以上數(shù)據(jù)繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如圖:頻數(shù)分布表分組頻數(shù)(單位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合計20請根據(jù)以上信息回答下列問題:(1)在頻數(shù)分布表中,a的值為,b的值為,并將頻數(shù)分布直方圖補充完整;(2)求這20天訪問王老師工作室的訪問人次的平均數(shù).21.(8分)如圖,已知△ABC,∠A=60°,AB=6,AC=1.(1)用尺規(guī)作△ABC的外接圓O;(2)求△ABC的外接圓O的半徑;(3)求扇形BOC的面積.22.(10分)已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?(2)當Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.23.(10分)如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點E,經(jīng)過B,D,E三點作⊙O.(1)求證:AC與⊙O相切于D點;(2)若AD=15,AE=9,求⊙O的半徑.24.(10分)已知關(guān)于的一元二次方程的一個根是1,求它的另一個根及m的值.25.(12分)關(guān)于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求證:(1)方程總有兩個實數(shù)根;(2)如果方程的兩根相等,求此時方程的根.26.如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.(1)求證:AP=BQ;(2)當BQ=時,求的長(結(jié)果保留);(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)配方的正確結(jié)果作出判斷:.故選D.2、C【解析】試題解析:根據(jù)平行線分線段成比例定理,可得:設(shè)解得:故選C.3、A【分析】根據(jù)直線和圓的位置關(guān)系可知,圓的半徑大于直線到圓距離,則直線l與O的位置關(guān)系是相交.【詳解】∵⊙O的半徑為5,圓心O到直線的距離為3,∴直線l與⊙O的位置關(guān)系是相交.故選A.【點睛】本題考查了直線和圓的位置關(guān)系,直接根據(jù)直線和圓的位置關(guān)系解答即可.4、D【分析】根據(jù)直線和圓的位置關(guān)系來判斷.【詳解】設(shè)圓心到直線l的距離為d,則d≤10,當d=10時,d=r,直線與圓相切;當r<10時,d<r,直線與圓相交,所以直線與圓相切或相交.故選D點睛:本題考查了直線與圓的位置關(guān)系,①直線和圓相離時,d>r;②直線和圓相交時,d<r;③直線和圓相切時,d=r(d為圓心到直線的距離),反之也成立.5、A【解析】試題分析:∵,∴.又∵,∴.解這個分式方程并檢驗,得.故選A.6、B【分析】根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質(zhì)得:|-1|=1.故選B.【點睛】本題考查絕對值的性質(zhì),需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).7、C【解析】根據(jù)二次函數(shù)圖象的開口方向與二次項系數(shù)的關(guān)系逐一判斷即可.【詳解】解:A.y=-3x2-1中,﹣3<0,二次函數(shù)圖象的開口向下,故A不符合題意;B.y=-x2+1中,-<0,二次函數(shù)圖象的開口向下,故B不符合題意;C.y=x2+3中,>0,二次函數(shù)圖象的開口向上,故C符合題意;D.y=-x2-5中,-1<0,二次函數(shù)圖象的開口向下,故D不符合題意;故選:C.【點睛】此題考查的是判斷二次函數(shù)圖像的開口方向,掌握二次函數(shù)圖象的開口方向與二次項系數(shù)的關(guān)系是解決此題的關(guān)鍵.8、A【解析】結(jié)合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點睛】此類題目主要考查二次函數(shù)圖象的平移規(guī)律,解題的關(guān)鍵是要搞清已知函數(shù)解析式確定平移后的函數(shù)解析式,還是已知平移后的解析式求原函數(shù)解析式,然后根據(jù)圖象平移規(guī)律“左加右減、上加下減“進行解答.9、D【分析】延長交網(wǎng)格于,連接,得直角三角形ACD,由勾股定理得出、,由三角函數(shù)定義即可得出答案.【詳解】解:延長交網(wǎng)格于,連接,如圖所示:則,,,的正切值;故選:D.【點睛】本題考查了解直角三角形以及勾股定理的運用;熟練掌握勾股定理,構(gòu)造直角三角形是解題的關(guān)鍵.10、A【分析】設(shè)PQ與AC交于點O,作⊥于,首先求出,當P與重合時,PQ的值最小,PQ的最小值=2.【詳解】設(shè)與AC交于點O,作⊥于,如圖所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四邊形PAQC是平行四邊形,
∴,∵⊥,∠ACB=45,∴,當與重合時,OP的值最小,則PQ的值最小,
∴PQ的最小值故選:A.【點睛】本題考查了勾股定理的運用、平行四邊形的性質(zhì)以及垂線段最短的性質(zhì),利用垂線段最短求線段的最小值是解題的關(guān)鍵.11、D【分析】相似三角形的周長比等于相似比,面積比等于相似比的平方.【詳解】∵兩個相似三角形的周長之比為1∶4∴它們的面積之比為1∶16故選D.【點睛】本題考查相似三角形的性質(zhì),本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握相似三角形的性質(zhì),即可完成.12、A【分析】根據(jù)相似三角形的判定定理、相似三角形的性質(zhì)定理、點與圓的位置關(guān)系、圓周角定理判斷即可.【詳解】解:A、任意畫兩個直角三角形,這兩個三角形相似是隨機事件,符合題意;B、相似三角形的對應(yīng)角相等是必然事件,故不符合題意;C、⊙O的半徑為5,OP=3,點P在⊙O外是不可能事件,故不符合題意;D、直徑所對的圓周角為直角是必然事件,故不符合題意;故選:A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.也考查了相似三角形的判定與性質(zhì),點與圓的位置關(guān)系,圓周角定理等知識.二、填空題(每題4分,共24分)13、【分析】作EC⊥x軸于C,EP⊥y軸于P,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,由題意可得點A,B的坐標分別為(4,0),B(0,),利用待定系數(shù)法求出直線AB的解析式,再聯(lián)立反比例函數(shù)解析式求出點,F(xiàn)的坐標.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根據(jù)梯形面積公式計算即可.【詳解】解:如圖,作EP⊥y軸于P,EC⊥x軸于C,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,
由題意可得點A,B的坐標分別為(4,0),B(0,),由點B的坐標為(0,),設(shè)直線AB的解析式為y=kx+,將點A的坐標代入得,0=4k+,解得k=-.∴直線AB的解析式為y=-x+.聯(lián)立一次函數(shù)與反比例函數(shù)解析式得,,解得或,即點E的坐標為(1,2),點F的坐標為(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,
∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案為:.【點睛】本題為一次函數(shù)與反比例函數(shù)的綜合題,考查了反比例函數(shù)k的幾何意義、一次函數(shù)解析式的求法,兩函數(shù)交點問題,掌握反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的比例系數(shù)k的幾何意義,利用轉(zhuǎn)化法求面積是解決問題的關(guān)鍵.14、3【分析】如圖,連接OD、OE、OF,由切線的性質(zhì)和切線長定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接著證明四邊形OECF為正方形,則CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的長.【詳解】解:如圖,連接OE,OF,OD,∵⊙O為△ABC內(nèi)切圓,與三邊分別相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四邊形OECF為矩形而OF=OE,∴四邊形OECF為正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案為:3【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心,切線的性質(zhì),切線長定理,勾股定理,正方形的判定和性質(zhì),熟悉切線長定理是本題的關(guān)鍵.15、1.6【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】解:根據(jù)題意知,小紅的身高為150-30=120(厘米),設(shè)小紅的影長為x厘米則,解得:x=160,∴小紅的影長為1.6米,故答案為1.6【點睛】此題主要考查了平行投影,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出的影長,體現(xiàn)了方程的思想.16、1【分析】利用扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則由此構(gòu)建方程即可得出答案.【詳解】解:設(shè)該扇形的圓心角度數(shù)為n°,∵扇形的面積為4π,半徑為6,∴4π=,解得:n=1.∴該扇形的圓心角度數(shù)為:1°.故答案為:1.【點睛】此題考查了扇形面積的計算,熟練掌握公式是解此題的關(guān)鍵.17、-6【解析】∵,∴,∴a=-6.18、【解析】本題應(yīng)分別求出正方形的總面積和陰影部分的面積,用陰影部分的面積除以總面積即可得出概率.【詳解】解:小蟲落到陰影部分的概率=,故答案為:.【點睛】本題考查的是概率的公式,用到的知識點為:概率=相應(yīng)的面積與總面積之比.三、解答題(共78分)19、(1)每瓶竹葉青酒售價為元時,利潤最大,最大利潤為元;(2)要使每天利潤不低于元,每瓶竹葉青酒售價應(yīng)控制在元到元之間.【分析】(1)設(shè)每瓶竹葉青酒售價為元,每天的銷售利潤為元,根據(jù)“當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶”即可列出二次函數(shù),再整理成頂點式即可得出;(2)由題意得,再根據(jù)二次函數(shù)的性質(zhì)即可得出.【詳解】解:(1)設(shè)每瓶竹葉青酒售價為元,每天的銷售利潤為元.則:,整理得:.,當時,取得最大值.每瓶竹葉青酒售價為元時,利潤最大,最大利潤為元.(2)每天的利潤為元時,.解得:,.,由二次函數(shù)圖象的性質(zhì)可知,時,.要使每天利潤不低于元,每瓶竹葉青酒售價應(yīng)控制在元到元之間.【點睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)題意找到關(guān)系式是解題的關(guān)鍵.20、(1)7、1,直方圖見解析;(2)20人次.【分析】(1)根據(jù)題目所給數(shù)據(jù)即可得出a、b的值,從而補全直方圖;
(2)根據(jù)平均數(shù)的概念列式求解可得.【詳解】解:(1)由題意知20≤x<25的天數(shù)a=7,25≤x<30的天數(shù)b=1,補全直方圖如下:故答案為:7、1.(2)這20天訪問王老師工作室的訪問人次的平均數(shù)為:答:這20天訪問王老師工作室的訪問人次的平均數(shù)為20人次.【點睛】此題考查了頻數(shù)(率)分布直方圖,平均數(shù),正確識別統(tǒng)計圖及統(tǒng)計表中的數(shù)據(jù)是解本題的關(guān)鍵.21、(1)見解析;(2);(3)【分析】(1)分別作出線段BC,線段AC的垂直平分線EF,MN交于點O,以O(shè)為圓心,OB為半徑作⊙O即可.(2)連接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解決問題.(3)利用扇形的面積公式計算即可.【詳解】(1)如圖⊙O即為所求.(2)連接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=1,∠A=60°,∴∠ACH=30°,∴AHAC=2,CHAH=2,∵AB=6,∴BH=1,∴BC2,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF,∠COF∠BOC=60°,∴OC.(3)S扇形OBC.【點睛】本題考查了作圖﹣復(fù)雜作圖,勾股定理,解直角三角形,三角形的外接圓與外心等知識,解答本題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.22、(1)見解析;(2)1【分析】(1)根據(jù)根的判別式的符號來證明;(2)根據(jù)韋達定理得到b+c=2k+1,bc=4k-1.又在直角△ABC中,根據(jù)勾股定理,得(b+c)2﹣2bc=()2,由此可以求得k的值.【詳解】(1)證明:∵△=[﹣(2k+1)]2﹣4×1×(4k﹣1)=4k2﹣12k+11=(2k﹣1)2+4,∴無論k取什么實數(shù)值,總有=(2k﹣1)2+4>0,即△>0,∴無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根;(2)解:∵兩條直角邊的長b和c恰好是方程x2﹣(2k+1)x+4k﹣1=0的兩個根,得∴b+c=2k+1,bc=4k﹣1,又∵在直角△ABC中,根據(jù)勾股定理,得b2+c2=a2,∴(b+c)2﹣2bc=()2,即(2k+1)2﹣2(4k﹣1)=11,整理后,得k2﹣k﹣6=0,解這個方程,得k=﹣2或k=1,當k=﹣2時,b+c=﹣4+1=﹣1<0,不符合題意,舍去,當k=1時,b+c=2×1+1=7,符合題意,故k=1.【點睛】此題考查根的判別式,掌握運算法則是解題關(guān)鍵23、(1)見解析;(2)1.【解析】試題分析:(1)連接OD,則有∠1=∠2,而∠2=∠3,得到∠1=∠3,因此OD∥BC,又由于∠C=90°,所以O(shè)D⊥AD,即可得出結(jié)論.(2)根據(jù)OD⊥AD,則在RT△OAD中,OA2=OD2+AD2,設(shè)半徑為r,AD=15,AE=9,得到(r+9)2=152+r2,解方程即可.(1)證明:連接OD,如圖所示:∵OD=OB,∴∠1=∠2,又∵BD平分∠ABC,∴∠2=∠3,∴∠1=∠3,∴OD∥BC,而∠C=90°,∴OD⊥AD,∴AC與⊙O相切于D點;(2)解:∵OD⊥AD,∴在RT△OAD中,OA2=OD2+AD2,又∵AD=15,AE=9,設(shè)半徑為r,∴(r+9)2=152+r2,解方程得,r=1,即⊙O的半徑為1.考點:切線的判定.24、另一根為-3,m=1【分析】設(shè)方程的另一個根為a,由根與系數(shù)的關(guān)系得出a+1=﹣m,a×1=﹣3,解方程組即可.【詳解】設(shè)方程的另一個根為a,則由根與系數(shù)的關(guān)系得:a+1=﹣m,a×1=﹣3,解得:a=﹣3,m=1,答:方程的另一根為﹣3,m=1.【點睛】本題考查了根與系數(shù)的關(guān)系和一元二次方程的解,能熟記根與系數(shù)的關(guān)系的內(nèi)容是解答本題的關(guān)鍵.25、(1)見解析;(1)x1=x1=1.【分析】(1)由△=(m+4)1?4(?1m?11)=(m+8)1≥0知方程有兩個實數(shù)根;(1)如果方程的兩根相等,則△=(m+8)1=0,據(jù)此求出m的值,代入方程求解可得.【詳解】(1)∵△=(m+4)1﹣4(﹣1m﹣11)=m1+16m+64=(m+8)1≥0,∴方程總有兩個實數(shù)根;(1)如果方程的兩根相等,則△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)田灌溉工程設(shè)計咨詢服務(wù)合同
- 2025版遵循五大原則的公共服務(wù)行業(yè)勞動合同訂立規(guī)范
- 2025版汽車行業(yè)勞動合同補充協(xié)議書
- 二零二五版房地產(chǎn)信托購房借款及信托擔保服務(wù)合同
- 二零二五年度汽車展示會車輛運輸服務(wù)合同
- 二零二五年度汽車銷售代理車輛購置貸款合同樣本
- 二零二五版建筑用防腐材料購銷合作協(xié)議
- 二零二五年度高校畢業(yè)生就業(yè)與就業(yè)培訓(xùn)服務(wù)協(xié)議
- 二零二五年度安全標準建筑安裝工程合同書
- 2025年度趙敏的勞動合同續(xù)簽
- 膝關(guān)節(jié)置換術(shù)的健康宣教
- 北師大版數(shù)學(xué)八年級下冊期末考試試題及答案
- QC/T 780-2024摩托車散熱器
- 《臨床技術(shù)操作規(guī)范-放射醫(yī)學(xué)檢查技術(shù)分冊》
- 人工喂養(yǎng)課件教學(xué)課件
- 2024全國中小學(xué)“學(xué)憲法、講憲法”知識競賽題庫及答案
- DB14-T 2735-2023 稻蟹蝦綜合種養(yǎng)技術(shù)規(guī)程
- 系統(tǒng)商用密碼應(yīng)用方案v5-2024(新模版)
- 延保服務(wù)合同模板
- 核磁共振(NMR)講課
- 移動機器人技術(shù)-課件全套 項目1-6 移動機器人概述、系統(tǒng)構(gòu)成 - 移動機器人高階認知與實踐
評論
0/150
提交評論