數(shù)學(xué)-專項9.11因式分解大題專練(重難點培優(yōu)30題七下蘇科)-【】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題(帶答案)【蘇科版】_第1頁
數(shù)學(xué)-專項9.11因式分解大題專練(重難點培優(yōu)30題七下蘇科)-【】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題(帶答案)【蘇科版】_第2頁
數(shù)學(xué)-專項9.11因式分解大題專練(重難點培優(yōu)30題七下蘇科)-【】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題(帶答案)【蘇科版】_第3頁
數(shù)學(xué)-專項9.11因式分解大題專練(重難點培優(yōu)30題七下蘇科)-【】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題(帶答案)【蘇科版】_第4頁
數(shù)學(xué)-專項9.11因式分解大題專練(重難點培優(yōu)30題七下蘇科)-【】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題(帶答案)【蘇科版】_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

【拔尖特訓(xùn)】2022-2023學(xué)年七年級數(shù)學(xué)下冊尖子生培優(yōu)必刷題【蘇科版】專題9.11因式分解大題專練(重難點培優(yōu)30題)班級:___________________姓名:_________________得分:_______________注意事項:本試卷試題解答30道,共分成三個層組:基礎(chǔ)過關(guān)題(第1-10題)、能力提升題(第11-20題)、培優(yōu)壓軸題(第21-30題),每個題組各10題,可以靈活選用.答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級等信息填寫在試卷規(guī)定的位置.一.解答題(共30小題)1.(2022春?江都區(qū)月考)分解因式:(1)x2﹣16;(2)2x2y﹣8xy+8y.【分析】(1)直接利用平方差公式即可;(2)先提公因式2y,再利用完全平方公式即可進行因式分解.【解答】解:(1)原式=(x+4)(x﹣4);(2)原式=2y(x2﹣4x+4)=2y(x﹣2)2.2.(2022春?沭陽縣月考)因式分解:(1)2x(a﹣b)+3y(b﹣a);(2)(x2+4)2﹣16x2.【分析】(1)原式變形后,提取公因式即可;(2)原式利用平方差公式,以及完全平方公式分解即可.【解答】解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.3.(2022秋?崇川區(qū)校級月考)因式分解:(1)3a2﹣18ab+27b2;(2)a2(a﹣b)+4(b﹣a).【分析】(1)先提公因式3,再利用完全平方公式進行因式分解即可;(2)先提公因式(a﹣b),再利用平方差公式即可進行因式分解.

【解答】解:(1)原式=3(a2﹣6ab+9b2)=3(a﹣3b)2;(2)原式=a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).4.(2022秋?崇川區(qū)校級月考)因式分解:(1)3ab3+15a3b;(2)(m﹣1)(m﹣3)+1.(3)3x3﹣6x2y+3xy2;(4)9a2(x﹣y)+4b2(y﹣x).【分析】(1)提公因式法,因式分解;(2)先化簡,再用公式法分解因式;(3)先提公因式,再利用公式法因式分解;(4)先提公因式,再利用公式法因式分解;【解答】解:(1)原式=3ab(b2+5a2);(2)原式=m2﹣4m+4=(m﹣2)2;(3)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2;(4)=(9a2﹣4b2)(x﹣y)=(3a﹣2b)(3a+2b)(x﹣y).5.(2022春?東臺市月考)因式分解:(1)2a2﹣50;(2)x2y﹣2xy+xy2.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式即可.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=xy(x﹣2+y).6.(2022秋?如東縣期中)分解因式:(1)﹣4x2+24xy﹣36y2;(2)(2x+y)2﹣(x+2y)2.

【分析】(1)直接提取公因式﹣4,進而利用完全平方公式分解因式即可;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)原式=﹣4(x2﹣6xy+9y2)=﹣4(x﹣3y)2;(2)原式=(2x+y+x+2y)[2x+y﹣(x+2y)]=(3x+3y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).7.(2022春?濱??h月考)因式分解:(1)18x2﹣50;(2)81x4﹣72x2y2+16y4.【分析】(1)直接提取公因式2,再利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.【解答】解:(1)原式=2(9x2﹣25)=2(3x+5)(3x﹣5);(2)原式=(9x2﹣4y2)2=[(3x+2y)(3x﹣2y)]2=(3x+2y)2(3x﹣2y)2.8.(2022春?興化市月考)把下列各式分解因式:(1)4x2﹣64;(2)25(a+b)2﹣9(a﹣b)2.【分析】(1)先提取公因式,再套用平方差公式;(2)先利用平方差公式,再提取公因式.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)25(a+b)2﹣9(a﹣b)2.=[5(a+b)+3(a﹣b)][5(a+b)﹣3(a﹣b)]

=(8a+2b)(2a+8b)=4(4a+b)(a+4b).9.(2022秋?射陽縣校級月考)因式分解:(1)2x(a﹣4)﹣(4﹣a);(2)3x2﹣27.【分析】(1)利用提公因式法,進行分解即可解答;(2)先提公因式,再利用平方差公式繼續(xù)分解即可解答.【解答】解:(1)2x(a﹣4)﹣(4﹣a)=2x(a﹣4)+(a﹣4)=(a﹣4)(2x+1);(2)3x2﹣27=3(x2﹣9)=3(x+3)(x﹣3).10.(2022春?高淳區(qū)校級期中)分解因式:(1)3ab2﹣6ab+3a;(2)2a2(a﹣b)﹣8(a﹣b).【分析】(1)先提取公因式,再按完全平方公式分解因式;(2)先提取公因式,再按平方差公式分解因式.【解答】解:(1)3ab2﹣6ab+3a=3a(b2﹣2b+1)=3a(b﹣1)2;(2)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2).11.(2022春?吳江區(qū)校級期中)因式分解:(1)﹣2x3+12x2﹣18x;(2)4a2(a﹣b)+(b﹣a).【分析】(1)先提公因式,再利用完全平方公式繼續(xù)分解即可解答;(2)先提公因式,再利用平方差公式繼續(xù)分解即可解答.

【解答】解:(1)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2;(2)4a2(a﹣b)+(b﹣a)=(a﹣b)(4a2﹣1)=(a﹣b)(2a+1)(2a﹣1).12.(2022春?盱眙縣期中)把下列各式分解因式(1)x2+2xy+y2(2)5x3﹣20x【分析】(1)根據(jù)公式法進行因式分解即可;(2)先提取公因式,再用公式法進行因式分解.【解答】解:(1)x2+2xy+y2=(x+y)2;(2)5x3﹣20x=5x(x2﹣4)=5x(x﹣2)(x+2).13.(2022春?吳江區(qū)期中)分解因式:(1)x2﹣8x+16;(2)4x3﹣16xy2.【分析】(1)原式利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(x﹣4)2;(2)原式=4x(x2﹣4y2)=4x(x+2y)(x﹣2y).14.(2022春?相城區(qū)校級期中)因式分解:(1)4ab+b;(2)x2﹣3x+2;(3)a2﹣b2+b?1(4)4a4﹣64.【分析】(1)用提取公因式法因式分解即可;(2)用十字相乘法因式分解即可;(3)先分組,再用公式法因式分解即可;

(4)先提取公因式,再用公式法因式分解即可.【解答】解:(1)4ab+b=b(4a+1);(2)x2﹣3x+2=(x﹣1)(x﹣2);(3)a2﹣b2+b?=a2﹣(b2﹣b+1=a2﹣(b?12=(a+b?12)(a﹣b(4)4a4﹣64=4(a4﹣16)=4(a2+4)(a2﹣4)=4(a2+4)(a+2)(a﹣2).15.(2022春?常州期中)因式分解:(1)a3b+ab2;(2)2a(x﹣y)﹣4b(x﹣y);(3)m4﹣1;(4)a4﹣8a2b2+16b4.【分析】(1)提取公因式分解因式;(2)提取公因式分解因式;(3)先用平方差公式分解因式,再用平方差公式分解因式,分解因式要徹底;(4)先用完全平方公式,再用平方差公式分解因式.【解答】解:(1)a3b+ab2;=ab(a2+b);(2)2a(x﹣y)﹣4b(x﹣y)=2(x﹣y)(a﹣2b);(3)m4﹣1;=(m2+1)(m2﹣1)=(m2+1)(m+1)(m﹣1);(4)a4﹣8a2b2+16b4

=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.16.(2022春?鐘樓區(qū)期中)因式分解:(1)7x2﹣63;(2)(a+b)2+6(a+b)+9;(3)16﹣(2a+3b)2;(4)a4﹣8a2b2+16b4.【分析】(1)原式提取公因式7,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可;(3)原式利用平方差公式分解即可;(4)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=7(x2﹣9)=7(x+3)(x﹣3);(2)原式=(a+b+3)2;(3)原式=[4+(2a+3b)][4﹣(2a+3b)]=(4+2a+3b)(4﹣2a﹣3b);(4)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.17.(2022春?吳江區(qū)期中)因式分解:(1)3x(a﹣b)﹣y(a﹣b);(2)m2+8m+16;(3)2x3﹣8x;(4)(x2+16y2)2﹣64x2y2.【分析】(1)利用提公因式法進行分解,即可解答;(2)利用完全平方公式進行分解,即可解答;(3)先提公因式,再利用平方差公式繼續(xù)分解即可解答;(4)先利用平方差公式,再利用完全平方公式繼續(xù)分解,即可解答.【解答】解:(1)3x(a﹣b)﹣y(a﹣b)=(a﹣b)(3x﹣y);(2)m2+8m+16=(m+4)2;

(3)2x3﹣8x=2x(x2﹣4)=2x(x+2)(x﹣2);(4)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.18.(2022春?宜興市校級期中)把下列各式因式分解:(1)x2﹣4xy+4y2;(2)a3﹣a;(3)x2(x﹣2)+4(2﹣x);(4)(a2+1)2﹣4a2.【分析】(1)利用完全平方公式進行分解即可解答;(2)先提公因式,再利用平方差公式繼續(xù)分解即可解答;(3)先提公因式,再利用平方差公式繼續(xù)分解即可解答;(4)先利用平方差公式,再利用完全平方公式繼續(xù)分解即可解答.【解答】解:(1)x2﹣4xy+4y2=(x﹣2y)2;(2)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(3)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x﹣2)(x﹣2)(x+2)=(x﹣2)2(x+2);(4)(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.19.(2022秋?萊州市期中)因式分解:(1)16a2﹣(a2+4)2(2)3a2m2(x﹣y)+27b2n2(y﹣x)

【分析】(1)先利用平方差公式,再利用完全平方公式進行解答即可;(2)先提公因式3(x﹣y),再利用平方差公式即可.【解答】解:(1)原式=(4a+a2+4)(4a﹣a2﹣4)=﹣(4a+a2+4)(﹣4a+a2+4)=﹣(a+2)2(a﹣2)2;(2)原式=3a2m2(x﹣y)﹣27b2n2(x﹣y)=3(x﹣y)(a2m2﹣9b2n2)=3(x﹣y)(am+3bn)(am﹣3bn).20.(2022秋?高昌區(qū)校級期中)因式分解:(1)2a(x﹣y)+3b(x﹣y);(2)2a2﹣8;(3)m2+12m+36.【分析】(1)直接提取公因式x﹣y分解因式即可;(2)直接提取公因式2,再利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式即可.【解答】解:(1)2a(x﹣y)+3b(x﹣y)=(x﹣y)(2a+3b);(2)2a2﹣8;=2(a2﹣4)=2(a﹣2)(a+2);(3)m2+12m+36=(m+6)2.21.(2022秋?任城區(qū)校級月考)因式分解:(1)x2(x﹣y)+9(y﹣x);(2)﹣3ma2+12ma﹣12m.【分析】(1)將原式變形,進而提取公因式(x﹣y),再利用平方差公式分解因式即可;(2)直接提取公因式﹣3m,再利用完全平方公式分解因式即可.【解答】解:(1)x2(x﹣y)+9(y﹣x)=x2(x﹣y)﹣9(x﹣y)

=(x﹣y)(x2﹣9)=(x﹣y)(x+3)(x﹣3);(2)﹣3ma2+12ma﹣12m=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2.22.(2022秋?廣饒縣校級月考)分解因式:(1)x2y﹣y3;(2)(a﹣b)b2+4(b﹣a);(3)x2(x﹣y)2﹣4(y﹣x)2;(4)(x+2)(x+3)+x2﹣4.【分析】(1)先提取公因式,再用公式法進行因式分解;(2)先提取公因式,再用公式法進行因式分解;(3)先提取公因式,再用公式法進行因式分解;(4)先將x2﹣4因式分解,再提取公因式即可.【解答】解:(1)x2y﹣y3=y(tǒng)(x2﹣y2)=y(tǒng)(x﹣y)(x+y);(2)(a﹣b)b2+4(b﹣a)=(a﹣b)(b2﹣4)=(a﹣b)(b﹣2)(b+2);(3)x2(x﹣y)2﹣4(y﹣x)2=(x﹣y)2(x2﹣4)=(x﹣y)2(x﹣2)(x+2);(4)(x+2)(x+3)+x2﹣4=(x+2)(x+3)+(x﹣2)(x+2)=(x+2)(2x+1).23.(2022秋?東營區(qū)校級月考)分解因式:(1)4a(b+c)2﹣4a2(b+c)+a3;

(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式,再用公式法進行因式分解;(2)用公式法進行因式分解即可.【解答】解:(1)4a(b+c)2﹣4a2(b+c)+a3;=a[4(b+c)2﹣4a(b+c)+a2]=a(2b+2c﹣a)2;(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.24.(2022秋?上蔡縣校級月考)因式分解:(1)2ax2﹣8a;(2)﹣x2y+6xy﹣9y;(3)(a﹣b)(a﹣4b)+ab.【分析】(1)先提公因式2a,再利用平方差公式即可;(2)先提公因式﹣y,再利用完全平方公式即可;(3)先利用多項式乘多項式進行計算后,再利用完全平方公式即可.【解答】解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(3)原式=a2﹣4ab﹣ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.25.(2022秋?豐城市期中)因式分解:(1)n2(m﹣2)+(2﹣m);(2)4a2﹣b2﹣4a+1.【分析】(1)先提取公因式,再用平方差公式分解因式;(2)分組后用完全平方公式分解因式,再用平方差公式分解因式;【解答】解:(1)n2(m﹣2)+(2﹣m)

=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1);(2)4a2﹣b2﹣4a+1=(4a2﹣4a+1)﹣b2=(2a﹣1)2﹣b2=(2a+b﹣1)(2a﹣b﹣1).26.(2022秋?越秀區(qū)校級期中)因式分解:(1)因式分解:x3﹣9x+8;(2)因式分解:2b3﹣b2﹣6b+5a﹣10ab+3;(3)因式分解:(x2﹣x﹣3)(x2﹣x﹣5)﹣3.【分析】(1)配上x﹣x,再利用提公因式法、公式法和分組分解法進行因式分解即可;(2)利用分組分解法將原式化為(2b3﹣b2)+(5a﹣10ab)﹣(6b﹣3),再利用提公因式法即可;(3)設(shè)y=x2﹣x,將原式化為(y﹣3)(y﹣5)﹣3,再整理得y2﹣8y+12,再利用十字相乘法分解為(y﹣2)(y﹣6),再將y=x2﹣x代入后,利用十字相乘法可得答案.【解答】解:(1)原式=x3﹣x+x﹣9x+8=(x3﹣x)+(x﹣9x)+8=(x3﹣x)﹣8x+8=x(x2﹣1)﹣8(x﹣1)=x(x+1)(x﹣1)﹣8(x﹣1)=(x﹣1)(x2+x﹣8);(2)原式=(2b3﹣b2)+(5a﹣10ab)﹣(6b﹣3)=b2(2b﹣1)﹣5a(2b﹣1)﹣3(2b﹣1)=(2b﹣1)(b2﹣5a﹣3);(3)設(shè)y=x2﹣x,則原式=(y﹣3)(y﹣5)﹣3=y(tǒng)2﹣8y+12=(y﹣2)(y﹣6)=(x2﹣x﹣2)(x2﹣x﹣6)

=(x+1)(x﹣2)(x+2)(x﹣3).27.(2022秋?宛城區(qū)校級月考)因式分解:(1)﹣4(xy+1)2+16(1﹣xy)2;(2)(x2﹣3)2+2(3﹣x2)+1;(3)x2﹣ax﹣bx+ab.【分析】(1)先根據(jù)平方差公式分解,再提公因式即可;(2)先將所求式進行變形,根據(jù)完全平方公式分解,最后利用平方差公式分解即可;(3)根據(jù)二二分組法解答即可.【解答】解:(1)﹣4(xy+1)2+16(1﹣xy)2=[4(1﹣xy)]2﹣[2(xy+1)]2=(4﹣4xy+2xy+2)(4﹣4xy﹣2xy﹣2)=(6﹣2xy)(2﹣6xy)=4(3﹣xy)(1﹣3xy);(2)(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x2﹣4)2=(x+2)2(x﹣2)2;(3)x2﹣ax﹣bx+ab=(x2﹣ax)﹣(bx﹣ab)=x(x﹣a)﹣b(x﹣a)=(x﹣a)(x﹣b).28.(2022?北碚區(qū)校級開學(xué))因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論