




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江寧波市2024屆數(shù)學(xué)高一下期末達標(biāo)測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.曲線與過原點的直線沒有交點,則的傾斜角的取值范圍是()A. B. C. D.2.以下給出了4個命題:(1)兩個長度相等的向量一定相等;(2)相等的向量起點必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個數(shù)共有()A.3個 B.2個 C.1個 D.0個3.若點,直線過點且與線段相交,則的斜率的取值范圍是()A.或B.或C.D.4.直線在軸上的截距為()A.2 B.﹣3 C.﹣2 D.35.已知三棱錐的所有頂點都在球的求面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.6.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().A. B. C. D.7.《九章算術(shù)》中有這樣一個問題:今有女子善織,日增等尺,七日織二十八尺,第二日、第五日、第八日所織之和為十五尺,問若聘該女子做工半月(15日),一共能織布幾尺()A.75 B.85 C.105 D.1208.已知直線l的方程是y=2x+3,則l關(guān)于y=-x對稱的直線方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=09.設(shè)等比數(shù)列滿足,,則()A.8 B.16 C.24 D.4810.已知集合,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),,的圖象如下圖所示,則,,的大小關(guān)系為__________.(用“”號連接)12.等差數(shù)列前9項的和等于前4項的和.若,則.13.已知向量,且,則的值為______14.下列說法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認為正確的序號全部寫上)15.設(shè)當(dāng)時,函數(shù)取得最大值,則______.16.給出下列四個命題:①在中,若,則;②已知點,則函數(shù)的圖象上存在一點,使得;③函數(shù)是周期函數(shù),且周期與有關(guān),與無關(guān);④設(shè)方程的解是,方程的解是,則.其中真命題的序號是______.(把你認為是真命題的序號都填上)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均收到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:(1)求參加此次高校自主招生面試的總?cè)藬?shù)、面試成績的中位數(shù)及分數(shù)在內(nèi)的人數(shù);(2)若從面試成績在內(nèi)的學(xué)生中任選三人進行隨機復(fù)查,求恰好有二人分數(shù)在內(nèi)的概率.18.智能手機的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學(xué)習(xí)時間.某市教育機構(gòu)從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:,.(1)根據(jù)頻率分布直方圖,估計這名手機使用者中使用時間的中位數(shù)是多少分鐘?(精確到整數(shù))(2)估計手機使用者平均每天使用手機多少分鐘?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?19.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值20.已知數(shù)列的前項和為,滿足,數(shù)列滿足.(1)求數(shù)列、的通項公式;(2),求數(shù)列的前項和;(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.21.已知函數(shù).(1)當(dāng)時,判斷并證明函數(shù)的奇偶性;(2)當(dāng)時,判斷并證明函數(shù)在上的單調(diào)性.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
作出曲線的圖形,得出各射線所在直線的傾斜角,觀察直線在繞著原點旋轉(zhuǎn)時,直線與曲線沒有交點時,直線的傾斜角的變化,由此得出的取值范圍.【題目詳解】當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為.作出曲線的圖象如下圖所示:由圖象可知,要使得過原點的直線與曲線沒有交點,則直線的傾斜角的取值范圍是,故選:A.【題目點撥】本題考查直線傾斜角的取值范圍,考查數(shù)形結(jié)合思想,解題的關(guān)鍵就是作出圖形,利用數(shù)形結(jié)合思想進行求解,屬于中等題.2、D【解題分析】
利用向量的概念性質(zhì)和向量的數(shù)量積對每一個命題逐一分析判斷得解.【題目詳解】(1)兩個長度相等的向量不一定相等,因為它們可能方向不同,所以該命題是錯誤的;(2)相等的向量起點不一定相同,只要它們方向相同長度相等就是相等向量,所以該命題是錯誤的;(3)若,且,則是錯誤的,舉一個反例,如,不一定相等,所以該命題是錯誤的;(4)若向量的模小于的模,則,是錯誤的,因為向量不能比較大小,因為向量既有大小又有方向,故該命題不正確.故選:D【題目點撥】本題主要考查向量的概念和數(shù)量積的計算,意在考查學(xué)生對這些知識的理解掌握水平.3、C【解題分析】試題分析:畫出三點坐標(biāo)可知,兩個邊界值為和,數(shù)形結(jié)合可知為.考點:1.相交直線;2.?dāng)?shù)形結(jié)合的方法;4、B【解題分析】
令,求出值則是截距?!绢}目詳解】直線方程化為斜截式為:,時,,所以,在軸上的截距為-3?!绢}目點撥】軸上的截距:即令,求出值;同理軸上的截距:即令,求出值5、A【解題分析】
根據(jù)題意作出圖形:設(shè)球心為O,過ABC三點的小圓的圓心為O1,則OO1⊥平面ABC,延長CO1交球于點D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長為1的正三角形,∴S△ABC=,∴.考點:棱錐與外接球,體積.【名師點睛】本題考查棱錐與外接球問題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長方體)的外接球(內(nèi)切球)球心是對角線的交點,正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對一般棱錐來講,外接球球心到名頂點距離相等,當(dāng)問題難以考慮時,可減少點的個數(shù),如先考慮到三個頂點的距離相等的點是三角形的外心,球心一定在過此點與此平面垂直的直線上.如直角三角形斜邊中點到三頂點距離相等等等.6、B【解題分析】
根據(jù)所給數(shù)據(jù),分別求出平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,然后進行比較可得選項.【題目詳解】,中位數(shù)為,眾數(shù)為.故選:B.【題目點撥】本題主要考查統(tǒng)計量的求解,明確平均數(shù)、中位數(shù)、眾數(shù)的求解方法是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).7、D【解題分析】設(shè)第一天織尺,第二天起每天比前一天多織尺,由已知得,,故選D.【方法點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的前項和公式,屬于中檔題.等差數(shù)列基本量的運算是等差數(shù)列的一類基本題型,數(shù)列中的五個基本量,一般可以“知二求三”,通過列方程組所求問題可以迎刃而解,另外,解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項和的關(guān)系.8、A【解題分析】將x=-y,y=-x代入方程y=2x+3中,得所求對稱的直線方程為-x=-2y+3,即x-2y+3=0.9、A【解題分析】
利用等比數(shù)列的通項公式即可求解.【題目詳解】設(shè)等比數(shù)列的公比為,則,解得所以.故選:A【題目點撥】本題考查了等比數(shù)列的通項公式,需熟記公式,屬于基礎(chǔ)題.10、D【解題分析】依題意,故.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】函數(shù)y=ax,y=xb,y=logcx的圖象如圖所示,由指數(shù)函數(shù)y=ax,x=2時,y∈(1,2);對數(shù)函數(shù)y=logcx,x=2,y∈(0,1);冪函數(shù)y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案為:b<a<c.12、10【解題分析】
根據(jù)等差數(shù)列的前n項和公式可得,結(jié)合等差數(shù)列的性質(zhì)即可求得k的值.【題目詳解】因為,且所以由等差數(shù)列性質(zhì)可知因為所以則根據(jù)等差數(shù)列性質(zhì)可知可得【題目點撥】本題考查了等差數(shù)列的前n項和公式,等差數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.13、-7【解題分析】
,利用列方程求解即可.【題目詳解】,且,,解得:.【題目點撥】考查向量加法、數(shù)量積的坐標(biāo)運算.14、③④【解題分析】
①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進而判斷出該命題的正誤?!绢}目詳解】①由得,則,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時,取得最小值,當(dāng)時,,故的最大值為,錯誤;②若,則函數(shù),則,即函數(shù)的最大值為,無最小值,故錯誤;③若,滿足,則,則,由,得,則,當(dāng)且僅當(dāng),即得,即時取等號,即的最小值為,故③正確;④,當(dāng)且僅當(dāng),即,即時,取等號,即函數(shù)的最小值為,故④正確,故答案為:③④?!绢}目點撥】本題考查利用基本不等式來判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個條件,同時注意結(jié)合雙勾函數(shù)單調(diào)性來考查,屬于中等題。15、;【解題分析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.16、①③【解題分析】
①利用三角形的內(nèi)角和定理以及正弦函數(shù)的單調(diào)性進行判斷;②根據(jù)余弦函數(shù)的有界性可進行判斷;③利用周期函數(shù)的定義,結(jié)合余弦函數(shù)的周期性進行判斷;④根據(jù)互為反函數(shù)圖象的對稱性進行判斷.【題目詳解】①在中,若,則,則,由于正弦函數(shù)在區(qū)間上為增函數(shù),所以,故命題①正確;②已知點,則函數(shù),所以該函數(shù)圖象上不存在一點,使得,故命題②錯誤;③函數(shù)的是周期函數(shù),當(dāng)時,,該函數(shù)的周期為.當(dāng)時,,該函數(shù)的周期為.所以,函數(shù)的周期與有關(guān),與無關(guān),命題③正確;④設(shè)方程的解是,方程的解是,由,可得,由,可得,則可視為函數(shù)與直線交點的橫坐標(biāo),可視為函數(shù)與直線交點的橫坐標(biāo),如下圖所示:聯(lián)立,得,可得點,由于函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,則直線與函數(shù)和函數(shù)圖象的兩個交點關(guān)于點對稱,所以,命題④錯誤.故答案為:①③.【題目點撥】本題考查三角函數(shù)的周期、正弦函數(shù)單調(diào)性的應(yīng)用、互為反函數(shù)圖象的對稱性的應(yīng)用以及余弦函數(shù)有界性的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)0.6【解題分析】
(1)從分數(shù)落在,的頻率為,人數(shù)為2,求出總?cè)藬?shù)的值,從而求出面試成績的中位數(shù)及分數(shù)在,內(nèi)的人數(shù);(2)用列舉法列出所有可能結(jié)果,確定其中符合要求的事件,即可求出概率.【題目詳解】(1)∵分數(shù)落在的頻率為,人數(shù)為2,∴,故,∵分數(shù)在的人數(shù)為15人,∴分數(shù)在的人數(shù)為人,又∵分數(shù)在的人數(shù)為人,∴分數(shù)在的人數(shù)為人,面試成績的中位數(shù)為分;(2)由(1)知分數(shù)在的有5人,分數(shù)在內(nèi)的有3人,記分數(shù)在的5人為1,2,3,4,5號,分數(shù)在內(nèi)的3人為1,2,3號,則從這5人中任選3人的基本事件為:123,124,125,134,135,145,234,235,245,345,共10種方式;其中恰有2人的分數(shù)在內(nèi)的基本事件為:124,125,134,135,234,235,共6種方式,所以所求概率為.【題目點撥】本題考查頻率分布直方圖和莖葉圖的綜合應(yīng)用,考查古典概型的概率求法,屬于基礎(chǔ)題.18、(1)分鐘.(2)58分鐘;(3)【解題分析】
(1)根據(jù)中位數(shù)將頻率二等分可直接求得結(jié)果;(2)每組數(shù)據(jù)中間值與對應(yīng)小矩形的面積乘積的總和即為平均數(shù);(3)采用列舉法分別列出所有基本事件和符合題意的基本事件,根據(jù)古典概型概率公式求得結(jié)果.【題目詳解】(1)設(shè)中位數(shù)為,則解得:(分鐘)這名手機使用者中使用時間的中位數(shù)是分鐘(2)平均每天使用手機時間為:(分鐘)即手機使用者平均每天使用手機時間為分鐘(3)設(shè)在內(nèi)抽取的兩人分別為,在內(nèi)抽取的三人分別為,則從五人中選出兩人共有以下種情況:兩名組長分別選自和的共有以下種情況:所求概率【題目點撥】本題考查根據(jù)頻率分布直方圖計算平均數(shù)和中位數(shù)、古典概型概率問題的求解;關(guān)鍵是能夠明確平均數(shù)和中位數(shù)的估算原理,從而計算得到結(jié)果;解決古典概型的常用方法為列舉法,屬于??碱}型.19、(1)(2)當(dāng)時,取最大值.【解題分析】
(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【題目詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設(shè),則,,則,,則.,當(dāng)時,,此時,即,,,,故.故的最大值為,此時.【題目點撥】本題考查了三角函數(shù)的應(yīng)用,重點考查了運算能力,屬中檔題20、(1),;(2)見解析;(3)存在,.【解題分析】
(1)利用可得,從而可得為等比數(shù)列,故可得其通項公式.用累加法可求的通項.(2)利用分組求和法可求,注意就的奇偶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 烏云娃娃教案課件
- 培訓(xùn)課件價格
- 2025年綠色養(yǎng)殖廢棄物資源化利用項目合同書
- 2025年度先進功能材料供應(yīng)及性能測試保障協(xié)議
- 2025年新型餐飲外賣APP系統(tǒng)開發(fā)與全鏈路運營戰(zhàn)略合作合同
- 2025年現(xiàn)代社區(qū)智能車位租賃與全方位物業(yè)管家服務(wù)協(xié)議
- 2025年新型節(jié)能玻璃幕墻設(shè)計與施工一體化質(zhì)量承諾合同
- 2025年中小學(xué)班級心理健康輔導(dǎo)與安全管理綜合服務(wù)協(xié)議
- 2025年度離婚財產(chǎn)子女撫養(yǎng)贍養(yǎng)專業(yè)調(diào)解與執(zhí)行合同模板
- 2025年公共衛(wèi)生人才培養(yǎng)與交流合作合同模板
- 靜壓植樁機鋼管樁施工技術(shù)
- 高值耗材點評制度
- 防臺防汛培訓(xùn)課件教學(xué)
- 2024年施工員題庫含完整答案(必刷)
- 道路施工流程講解
- 有限合伙企業(yè)合伙協(xié)議
- 保險資管合規(guī)風(fēng)險管理-深度研究
- 2022教師民族團結(jié)培訓(xùn)
- 《慢阻肺健康大課堂》課件
- 2024人教版英語七年級下冊《Unit 3 Keep Fit How do we keep fit》大單元整體教學(xué)設(shè)計2022課標(biāo)
- 中國高血壓防治指南(2024年修訂版)
評論
0/150
提交評論