




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆貴州六盤(pán)水育才中學(xué)高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.3.已知平面向量,滿(mǎn)足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.14.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.5.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個(gè)新數(shù)列,則()A.1194 B.1695 C.311 D.10956.定義在上的偶函數(shù),對(duì),,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.7.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.8.已知命題p:直線(xiàn)a∥b,且b?平面α,則a∥α;命題q:直線(xiàn)l⊥平面α,任意直線(xiàn)m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)9.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.10.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.11.的展開(kāi)式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.18012.如圖,在平行四邊形中,對(duì)角線(xiàn)與交于點(diǎn),且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱(chēng)為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.14.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.15.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)個(gè),則該外商不同的投資方案有____種.16.銳角中,角,,所對(duì)的邊分別為,,,若,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線(xiàn):(為參數(shù)),曲線(xiàn)(為參數(shù)).(1)設(shè)與相交于,兩點(diǎn),求;(2)若把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)距離的最小值.18.(12分)曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;(2)若直線(xiàn)與曲線(xiàn),的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.19.(12分)已知圓外有一點(diǎn),過(guò)點(diǎn)作直線(xiàn).(1)當(dāng)直線(xiàn)與圓相切時(shí),求直線(xiàn)的方程;(2)當(dāng)直線(xiàn)的傾斜角為時(shí),求直線(xiàn)被圓所截得的弦長(zhǎng).20.(12分)在直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線(xiàn)的極坐標(biāo)方程為,射線(xiàn)的極坐標(biāo)方程為.(Ⅰ)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程,并指出是何種曲線(xiàn);(Ⅱ)若射線(xiàn)與曲線(xiàn)交于兩點(diǎn),射線(xiàn)與曲線(xiàn)交于兩點(diǎn),求面積的取值范圍.21.(12分)本小題滿(mǎn)分14分)已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)被曲線(xiàn)截得的線(xiàn)段的長(zhǎng)度22.(10分)為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.2、A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱(chēng)性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱(chēng)中心的橫坐標(biāo).3、B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線(xiàn).由圓切線(xiàn)的性質(zhì)可知的最小值即為到直線(xiàn)的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線(xiàn)性質(zhì)及點(diǎn)到直線(xiàn)距離公式即可求得直線(xiàn)方程,進(jìn)而求得原點(diǎn)到直線(xiàn)的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線(xiàn),如下圖所示:所以的最小值即為到直線(xiàn)的距離最小值根據(jù)圓的切線(xiàn)性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線(xiàn)的方程為,化簡(jiǎn)可得由切線(xiàn)性質(zhì)及點(diǎn)到直線(xiàn)距離公式可得,化簡(jiǎn)可得即所以切線(xiàn)方程為或所以當(dāng)變化時(shí),到直線(xiàn)的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問(wèn)題,圓的切線(xiàn)性質(zhì)及點(diǎn)到直線(xiàn)距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.4、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.5、D【解析】
確定中前35項(xiàng)里兩個(gè)數(shù)列中的項(xiàng)數(shù),數(shù)列中第35項(xiàng)為70,這時(shí)可通過(guò)比較確定中有多少項(xiàng)可以插入這35項(xiàng)里面即可得,然后可求和.【詳解】時(shí),,所以數(shù)列的前35項(xiàng)和中,有三項(xiàng)3,9,27,有32項(xiàng),所以.故選:D.【點(diǎn)睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項(xiàng)和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項(xiàng)中有多少項(xiàng)是中的,又有多少項(xiàng)是中的.6、A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)椋?,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.7、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.8、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線(xiàn)面平行的判定,我們易得命題若直線(xiàn),直線(xiàn)平面,則直線(xiàn)平面或直線(xiàn)在平面內(nèi),命題為假命題;根據(jù)線(xiàn)面垂直的定義,我們易得命題若直線(xiàn)平面,則若直線(xiàn)與平面內(nèi)的任意直線(xiàn)都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線(xiàn)面平行與垂直有關(guān)命題真假性的判斷,考查含有簡(jiǎn)單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.9、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.10、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B11、D【解析】
求的展開(kāi)式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開(kāi)式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開(kāi)式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
畫(huà)出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫(huà)出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線(xiàn),就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡(jiǎn)即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問(wèn)題,涉及到距離的最值問(wèn)題,在處理這類(lèi)問(wèn)題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.14、8(寫(xiě)為也得分)【解析】
由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.15、60【解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.16、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質(zhì)得出的范圍,再利用二倍角公式化簡(jiǎn),即可得出答案.【詳解】由題意得由正弦定理得化簡(jiǎn)得又為銳角三角形,則,,.故答案為【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)將直線(xiàn)和曲線(xiàn)化為普通方程,聯(lián)立直線(xiàn)和曲線(xiàn),可得交點(diǎn)坐標(biāo),可得的值;(2)可得曲線(xiàn)的參數(shù)方程,利用點(diǎn)到直線(xiàn)的距離公式結(jié)合三角形的最值可得答案.【詳解】解:(1)直線(xiàn)的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點(diǎn)為,,則.(2)曲線(xiàn)的參數(shù)方程為(為參數(shù)),故點(diǎn)的坐標(biāo)為,從而點(diǎn)到直線(xiàn)的距離是,由此當(dāng)時(shí),取得最小值,且最小值為.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點(diǎn)到直線(xiàn)的距離公式等,屬于中檔題.18、(1)的極坐標(biāo)方程為;曲線(xiàn)的直角坐標(biāo)方程.(2)【解析】
(1)消去參數(shù),可得曲線(xiàn)的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.(2)解法1:設(shè)直線(xiàn)的傾斜角為,把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通坐標(biāo)方程,求得,再把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線(xiàn)的極坐標(biāo)方程為,分別代入曲線(xiàn),的極坐標(biāo)方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線(xiàn)的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線(xiàn)的直角坐標(biāo)方程為,即,則曲線(xiàn)的極坐標(biāo)方程為,即,又因?yàn)榍€(xiàn)的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線(xiàn)的直角坐標(biāo)方程.(2)解法1:設(shè)直線(xiàn)的傾斜角為,則直線(xiàn)的參數(shù)方程為(為參數(shù),),把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通坐標(biāo)方程得:,解得,,,把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通坐標(biāo)方程得:,解得,,,,,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.解法2:設(shè)直線(xiàn)的極坐標(biāo)方程為),代入曲線(xiàn)的極坐標(biāo)方程,得,,把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的極坐標(biāo)方程得:,,即,,曲線(xiàn)的參,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標(biāo)方程與直角坐標(biāo)方程點(diǎn)互化,以及直線(xiàn)參數(shù)方程的應(yīng)用和極坐標(biāo)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線(xiàn)的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線(xiàn)方程,然后求得圓心與直線(xiàn)的距離,由弦長(zhǎng)公式即可得出答案.【詳解】解:(1)由題意可得,直線(xiàn)與圓相切當(dāng)斜率不存在時(shí),直線(xiàn)的方程為,滿(mǎn)足題意當(dāng)斜率存在時(shí),設(shè)直線(xiàn)的方程為,即∴,解得∴直線(xiàn)的方程為∴直線(xiàn)的方程為或(2)當(dāng)直線(xiàn)的傾斜角為時(shí),直線(xiàn)的方程為圓心到直線(xiàn)的距離為∴弦長(zhǎng)為【點(diǎn)睛】本題考查了直線(xiàn)的方程、直線(xiàn)與圓的位置關(guān)系、點(diǎn)到直線(xiàn)的距離公
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年法律知識(shí)法治建設(shè)知識(shí)競(jìng)賽-網(wǎng)絡(luò)環(huán)境下的知識(shí)產(chǎn)權(quán)保護(hù)知識(shí)競(jìng)賽歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年法律知識(shí)法治建設(shè)知識(shí)競(jìng)賽-中醫(yī)藥法知識(shí)歷年參考題庫(kù)含答案解析(5套典型考題)
- 大三歡送會(huì)主持詞
- 2025年安全知識(shí)安全生產(chǎn)知識(shí)競(jìng)賽-核安全知識(shí)競(jìng)賽歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(財(cái)經(jīng)商貿(mào))-金融法規(guī)歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(財(cái)經(jīng)商貿(mào))-投資學(xué)概論歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(美學(xué))-設(shè)計(jì)美學(xué)歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(管理類(lèi))-生產(chǎn)與運(yùn)作管理歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(法學(xué))-創(chuàng)業(yè)法學(xué)歷年參考題庫(kù)含答案解析(5套典型考題)
- 2025年大學(xué)試題(教育學(xué))-文秘教育歷年參考題庫(kù)含答案解析(5套典型考題)
- 對(duì)臺(tái)貿(mào)易管理辦法
- 眼疾病課件教學(xué)課件
- 超聲醫(yī)學(xué)心包填塞診斷與應(yīng)用
- 2025年初中音樂(lè)教師招聘考試試卷含答案(三套)
- 2025小紅書(shū)閉環(huán)電商推廣投放產(chǎn)品與方法論
- 暑假社區(qū)托管活動(dòng)方案
- 2025年云南省中考化學(xué)試卷真題(含答案)
- 收養(yǎng)孩子合同協(xié)議書(shū)
- 獸醫(yī)產(chǎn)科學(xué)之公畜科學(xué)課件
- 五金廠(chǎng)臨時(shí)工勞務(wù)合同(通用12篇)
- DB4401-T 19-2019涉河建設(shè)項(xiàng)目河道管理技術(shù)規(guī)范-(高清現(xiàn)行)
評(píng)論
0/150
提交評(píng)論