2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷含解析_第1頁
2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷含解析_第2頁
2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷含解析_第3頁
2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷含解析_第4頁
2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省遼河油田歡喜嶺第二初級中學中考數(shù)學模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在2.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.3.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.4.在下列函數(shù)中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=5.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1206.如圖,取一張長為、寬為的長方形紙片,將它對折兩次后得到一張小長方形紙片,若要使小長方形與原長方形相似,則原長方形紙片的邊應滿足的條件是()A. B. C. D.7.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.8.如圖圖形中是中心對稱圖形的是()A. B.C. D.9.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.83310.下列計算正確的是A. B. C. D.11.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是A.20、20 B.30、20 C.30、30 D.20、3012.﹣2018的絕對值是()A.±2018 B.﹣2018 C.﹣ D.2018二、填空題:(本大題共6個小題,每小題4分,共24分.)13.請寫出一個比2大且比4小的無理數(shù):________.14.鼓勵科技創(chuàng)新、技術發(fā)明,北京市2012-2017年專利授權量如圖所示.根據(jù)統(tǒng)計圖中提供信息,預估2018年北京市專利授權量約______件,你的預估理由是______.15.關于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________16.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.17.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,18.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.20.(6分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.(1)求雙曲線的解析式;(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.21.(6分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.22.(8分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.23.(8分)如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.24.(10分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經(jīng)預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù).為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?25.(10分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。26.(12分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.27.(12分)在國家的宏觀調(diào)控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續(xù)回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

根據(jù)最小的正整數(shù)是1解答即可.【題目詳解】最小的正整數(shù)是1.故選B.【題目點撥】本題考查了有理數(shù)的認識,關鍵是根據(jù)最小的正整數(shù)是1解答.2、C.【解題分析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.3、D【解題分析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【題目詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【題目點撥】本題考查了方差的知識,說明了當數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.4、D【解題分析】

依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進行判斷即可.【題目詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點,符合題意;故選D.5、D【解題分析】

由tanA的值,利用銳角三角函數(shù)定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【題目詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【題目點撥】此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.6、B【解題分析】

由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,然后根據(jù)相似多邊形的定義,列出比例式即可求出結論.【題目詳解】解:由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,∵小長方形與原長方形相似,故選B.【題目點撥】此題考查的是相似三角形的性質(zhì),根據(jù)相似三角形的定義列比例式是解決此題的關鍵.7、B【解題分析】分析:直接利用軸對稱圖形的性質(zhì)進而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關鍵.8、B【解題分析】

把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【題目詳解】解:根據(jù)中心對稱圖形的定義可知只有B選項是中心對稱圖形,故選擇B.【題目點撥】本題考察了中心對稱圖形的含義.9、C【解題分析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.10、B【解題分析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.11、C【解題分析】分析:由表提供的信息可知,一組數(shù)據(jù)的眾數(shù)是這組數(shù)中出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)則是將這組數(shù)據(jù)從小到大(或從大到?。┮来闻帕袝r,處在最中間位置的數(shù),據(jù)此可知這組數(shù)據(jù)的眾數(shù),中位數(shù).詳解:根據(jù)右圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是30,30.故選C.點睛:考查眾數(shù)和中位數(shù)的概念,熟記概念是解題的關鍵.12、D【解題分析】分析:根據(jù)絕對值的定義解答即可,數(shù)軸上,表示一個數(shù)a的點到原點的距離叫做這個數(shù)的絕對值.詳解:﹣2018的絕對值是2018,即.故選D.點睛:本題考查了絕對值的定義,熟練掌握絕對值的定義是解答本題的關鍵,正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(或)【解題分析】

利用完全平方數(shù)和算術平方根對無理數(shù)的大小進行估算,然后找出無理數(shù)即可【題目詳解】設無理數(shù)為,,所以x的取值在4~16之間都可,故可填【題目點撥】本題考查估算無理數(shù)的大小,能夠判斷出中間數(shù)的取值范圍是解題關鍵14、113407,北京市近兩年的專利授權量平均每年增加6458.5件.【解題分析】

依據(jù)北京市近兩年的專利授權量的增長速度,即可預估2018年北京市專利授權量.【題目詳解】解:∵北京市近兩年的專利授權量平均每年增加:(件),∴預估2018年北京市專利授權量約為106948+6458.5≈113407(件),故答案為:113407,北京市近兩年的專利授權量平均每年增加6458.5件.【題目點撥】此題考查統(tǒng)計圖的意義,解題的關鍵在于看懂圖中數(shù)據(jù).15、2.【解題分析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.16、【解題分析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【題目詳解】畫樹狀圖得:∵共有9種等可能的結果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【題目點撥】本題主要考查了求隨機事件概率的方法,解本題的要點在于根據(jù)題意畫出樹狀圖,從而求出答案.17、15或255°【解題分析】如下圖,設直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.18、【解題分析】

要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【題目詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【題目點撥】本題考查了平面展開-最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側面展開成矩形,“化曲面為平面”是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明見解析;【解題分析】

(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質(zhì)得到結論.【題目詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【題目點撥】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質(zhì).20、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解題分析】【分析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點C的坐標,根據(jù)圖象可得結論.【題目詳解】(1)∵點A在直線y1=1x﹣1上,∴設A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【題目點撥】本題考查了反比例函數(shù)和一次函數(shù)的綜合;熟練掌握通過求點的坐標進一步求函數(shù)解析式的方法;通過觀察圖象,從交點看起,函數(shù)圖象在上方的函數(shù)值大.21、x+1,2.【解題分析】

先根據(jù)單項式乘以多項式的運算法則、平方差公式計算后,再去掉括號,合并同類項化為最簡后代入求值即可.【題目詳解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,當x=1時,原式=2.【題目點撥】本題考查了整式的化簡求值,根據(jù)整式的運算法則先把知識化為最簡是解決問題的關鍵.22、(1)2、45、20;(2)72;(3)【解題分析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總人數(shù),總人數(shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總人數(shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調(diào)查的總人數(shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個可能的結果,選中的兩名同學恰好是甲、乙的結果有2個,故P(選中的兩名同學恰好是甲、乙)=.點睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應用,要熟練掌握.23、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解題分析】

(1)依據(jù)點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據(jù)函數(shù)圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據(jù)圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數(shù)圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【題目詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據(jù)圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【題目點撥】本題考查了動點問題的函數(shù)圖象,弄清函數(shù)圖象上的信息是解答本題的關鍵.24、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解題分析】

(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據(jù)“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數(shù)解析式,結合x的取值范圍,利用一次函數(shù)的性質(zhì)求解可得.【題目詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【題目點撥】本題主要考查一次函數(shù)的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據(jù)此列出不等式與函數(shù)解析式.25、(1);(2).【解題分析】

(1)根據(jù)概率=所求情況數(shù)與總情況數(shù)之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【題目詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論