2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第1頁(yè)
2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第2頁(yè)
2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第3頁(yè)
2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第4頁(yè)
2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河南省鶴壁市、淇縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.若|a|=﹣a,則a為()A.a(chǎn)是負(fù)數(shù) B.a(chǎn)是正數(shù) C.a(chǎn)=0 D.負(fù)數(shù)或零2.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣13.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線(xiàn)y=ax2(a≠0)經(jīng)過(guò)△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.4.如圖,點(diǎn)A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°5.設(shè)x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.126.已知在一個(gè)不透明的口袋中有4個(gè)形狀、大小、材質(zhì)完全相同的球,其中1個(gè)紅色球,3個(gè)黃色球.從口袋中隨機(jī)取出一個(gè)球(不放回),接著再取出一個(gè)球,則取出的兩個(gè)都是黃色球的概率為()A.34 B.23 C.97.如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿(mǎn)足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.808.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°9.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣10.如圖,直線(xiàn)AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知雙曲線(xiàn)經(jīng)過(guò)直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(-6,4),則△AOC的面積為.12.如圖,在⊙O中,點(diǎn)B為半徑OA上一點(diǎn),且OA=13,AB=1,若CD是一條過(guò)點(diǎn)B的動(dòng)弦,則弦CD的最小值為_(kāi)____.13.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點(diǎn))15的處,則小明的影子的長(zhǎng)為_(kāi)_______.14.因式分解:__________.15.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個(gè)圖案開(kāi)始,每個(gè)圖案中正三角形的個(gè)數(shù)都比上一個(gè)圖案中正三角形的個(gè)數(shù)多4個(gè),則第n個(gè)圖案中正三角形的個(gè)數(shù)為(用含n的代數(shù)式表示).16.分解因式:=.三、解答題(共8題,共72分)17.(8分)關(guān)于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)m為何整數(shù)時(shí),此方程的兩個(gè)根都為負(fù)整數(shù).18.(8分)已知,如圖,直線(xiàn)MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.求證:DE是⊙O的切線(xiàn);若DE=6cm,AE=3cm,求⊙O的半徑.19.(8分)頂點(diǎn)為D的拋物線(xiàn)y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線(xiàn)y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).求出拋物線(xiàn)的解析式;如圖1,點(diǎn)M為線(xiàn)段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn),垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線(xiàn),交直線(xiàn)y=﹣x+m于G,交拋物線(xiàn)于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).20.(8分)已知平行四邊形.尺規(guī)作圖:作的平分線(xiàn)交直線(xiàn)于點(diǎn),交延長(zhǎng)線(xiàn)于點(diǎn)(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);在(1)的條件下,求證:.21.(8分)如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線(xiàn)y=+m經(jīng)過(guò)點(diǎn)C,與拋物線(xiàn)的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線(xiàn)CD上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線(xiàn)CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線(xiàn)解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.22.(10分)一茶葉專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷(xiāo)售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷(xiāo)一段時(shí)間后得到如下數(shù)據(jù):銷(xiāo)售單價(jià)x(元/kg)

120

130

180

每天銷(xiāo)量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學(xué)過(guò)的某一種函數(shù)關(guān)系.(1)直接寫(xiě)出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;(2)當(dāng)銷(xiāo)售單價(jià)為多少時(shí),銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?23.(12分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動(dòng)至A點(diǎn)停止,則從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)多少時(shí)間,△BEP為等腰三角形.24.網(wǎng)癮低齡化問(wèn)題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門(mén)在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據(jù)絕對(duì)值的性質(zhì)解答.【題目詳解】解:當(dāng)a≤0時(shí),|a|=-a,∴|a|=-a時(shí),a為負(fù)數(shù)或零,故選D.【題目點(diǎn)撥】本題考查的是絕對(duì)值的性質(zhì),①當(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)-a;③當(dāng)a是零時(shí),a的絕對(duì)值是零.2、B【解題分析】

根據(jù)相反數(shù)的的定義解答即可.【題目詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【題目點(diǎn)撥】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問(wèn)題的關(guān)鍵.3、B【解題分析】試題解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時(shí),拋物線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),拋物線(xiàn)的開(kāi)口最小,取得最大值拋物線(xiàn)經(jīng)過(guò)△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時(shí),拋物線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),拋物線(xiàn)的開(kāi)口最小,取得最小值拋物線(xiàn)經(jīng)過(guò)△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線(xiàn)開(kāi)口的方向和開(kāi)口的大小,開(kāi)口向上,開(kāi)口向下.的絕對(duì)值越大,開(kāi)口越小.4、B【解題分析】

由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計(jì)算出∠AOB=130°,則根據(jù)圓周角定理得∠P=

∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【題目詳解】解:在圓上取點(diǎn)

P

,連接

PA

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°?2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【題目點(diǎn)撥】本題考查的是圓,熟練掌握?qǐng)A周角定理是解題的關(guān)鍵.5、C【解題分析】試題分析:根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計(jì)算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.6、D【解題分析】試題分析:列舉出所有情況,看取出的兩個(gè)都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫(huà)樹(shù)狀圖如下:共有12種情況,取出2個(gè)都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹(shù)狀法.7、C【解題分析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點(diǎn):勾股定理.8、C【解題分析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問(wèn)題;2.平行線(xiàn)的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).9、D【解題分析】

根據(jù)合并同類(lèi)項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則進(jìn)行計(jì)算即可.【題目詳解】解:A:2a+3a=(2+3)a=5a,故A錯(cuò)誤;B:x8÷x2=x8-2=x6,故B錯(cuò)誤;C:=,故C錯(cuò)誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【題目點(diǎn)撥】本題考查了合并同類(lèi)項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則.其中指數(shù)為分?jǐn)?shù)的情況在初中階段很少出現(xiàn).10、B【解題分析】

先由平行線(xiàn)性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計(jì)算出∠BAC的度數(shù),再根據(jù)角平分線(xiàn)性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【題目詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【題目點(diǎn)撥】本題考查了平行線(xiàn)的性質(zhì)和角平分線(xiàn)的定義,解題的關(guān)鍵是熟練掌握兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解題分析】解:∵OA的中點(diǎn)是D,點(diǎn)A的坐標(biāo)為(﹣6,4),∴D(﹣1,2),∵雙曲線(xiàn)y=經(jīng)過(guò)點(diǎn)D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.12、10【解題分析】

連接OC,當(dāng)CD⊥OA時(shí)CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【題目詳解】連接OC,當(dāng)CD⊥OA時(shí)CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【題目點(diǎn)撥】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩段弧

.13、1.【解題分析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長(zhǎng).【題目詳解】解:根據(jù)題意,易得△MBA∽△MCO,

根據(jù)相似三角形的性質(zhì)可知,即,

解得AM=1m.則小明的影長(zhǎng)為1米.

故答案是:1.【題目點(diǎn)撥】本題只要是把實(shí)際問(wèn)題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長(zhǎng).14、【解題分析】

先提取公因式x,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.【題目詳解】解:原式,故答案為:【題目點(diǎn)撥】本題考查提公因式,熟練掌握運(yùn)算法則是解題關(guān)鍵.15、4n+1【解題分析】

分析可知規(guī)律是每個(gè)圖案中正三角形的個(gè)數(shù)都比上一個(gè)圖案中正三角形的個(gè)數(shù)多4個(gè).【題目詳解】解:第一個(gè)圖案正三角形個(gè)數(shù)為6=1+4;第二個(gè)圖案正三角形個(gè)數(shù)為1+4+4=1+1×4;第三個(gè)圖案正三角形個(gè)數(shù)為1+1×4+4=1+3×4;…;第n個(gè)圖案正三角形個(gè)數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點(diǎn):規(guī)律型:圖形的變化類(lèi).16、a(a+2)(a-2)【解題分析】

三、解答題(共8題,共72分)17、(1)m≠1且m≠;(2)m=-1或m=-2.【解題分析】

(1)由方程有兩個(gè)不相等的實(shí)數(shù)根,可得△>1,列出關(guān)于m的不等式解之可得答案;(2)解方程,得:,,由m為整數(shù),且方程的兩個(gè)根均為負(fù)整數(shù)可得m的值.【題目詳解】解:(1)△=-4ac=(3m-2)+24m=(3m+2)≥1當(dāng)m≠1且m≠時(shí),方程有兩個(gè)不相等實(shí)數(shù)根.(2)解方程,得:,,m為整數(shù),且方程的兩個(gè)根均為負(fù)整數(shù),m=-1或m=-2.m=-1或m=-2時(shí),此方程的兩個(gè)根都為負(fù)整數(shù)【題目點(diǎn)撥】本題主要考查利用一元二次方程根的情況求參數(shù).18、解:(1)證明見(jiàn)解析;(2)⊙O的半徑是7.5cm.【解題分析】

(1)連接OD,根據(jù)平行線(xiàn)的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線(xiàn).(2)由直角三角形的特殊性質(zhì),可得AD的長(zhǎng),又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【題目詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線(xiàn).(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點(diǎn):切線(xiàn)的判定;平行線(xiàn)的判定與性質(zhì);圓周角定理;相似三角形的判定與性質(zhì).19、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解題分析】

(1)將點(diǎn)E代入直線(xiàn)解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線(xiàn)解析式中,可求出拋物線(xiàn)解析式.(2)將拋物線(xiàn)解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線(xiàn)BD的解析式,代入點(diǎn)B、D,可求出直線(xiàn)BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長(zhǎng)度可表示,利用翻折推出CG=HG,列等式求解即可.【題目詳解】(1)將點(diǎn)E代入直線(xiàn)解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線(xiàn)的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線(xiàn)BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線(xiàn)BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對(duì)應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【題目點(diǎn)撥】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線(xiàn)段長(zhǎng)度,幾何圖形與二次函數(shù)結(jié)合的問(wèn)題,最后一問(wèn)推出CG=HG為解題關(guān)鍵.20、(1)見(jiàn)解析;(2)見(jiàn)解析.【解題分析】試題分析:(1)作∠BAD的平分線(xiàn)交直線(xiàn)BC于點(diǎn)E,交DC延長(zhǎng)線(xiàn)于點(diǎn)F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結(jié)論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點(diǎn):作圖—基本作圖;平行四邊形的性質(zhì).21、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解題分析】

(1)利用待定系數(shù)法求拋物線(xiàn)解析式和直線(xiàn)CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問(wèn)題;

(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿(mǎn)足條件的m的值.【題目詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線(xiàn)的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線(xiàn)CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.22、(1)y=﹣0.5x+160,120≤x≤180;(2)當(dāng)銷(xiāo)售單價(jià)為180元時(shí),銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是7000元.【解題分析】試題分析:(1)首先由表格可知:銷(xiāo)售單價(jià)沒(méi)漲10元,就少銷(xiāo)售5kg,即可得y與x是一次函數(shù)關(guān)系,則可求得答案;(2)首先設(shè)銷(xiāo)售利潤(rùn)為w元,根據(jù)題意可得二次函數(shù),然后求最值即可.試題解析:(1)∵由表格可知:銷(xiāo)售單價(jià)沒(méi)漲10元,就少銷(xiāo)售5kg,∴y與x是一次函數(shù)關(guān)系,∴y與x的函數(shù)關(guān)系式為:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵銷(xiāo)售單價(jià)不低于120元/kg.且不高于180元/kg,∴自變量x的取值范圍為:120≤x≤180;(2)設(shè)銷(xiāo)售利潤(rùn)為w元,則w=(x﹣80)(﹣0.5x+160)=-12(x-200)2+7200,∵a=-12<0,∴當(dāng)x<200時(shí),y隨x答:當(dāng)銷(xiāo)售單價(jià)為180元時(shí),銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是7000元.23、(1)證明見(jiàn)解析;(2)從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.【解題分析】

(1)根據(jù)內(nèi)錯(cuò)角相等,得到兩邊平行,然后再根據(jù)三角形內(nèi)角和等于180度得到另一對(duì)內(nèi)錯(cuò)角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【題目詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論