




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北黃岡2024屆高二上數(shù)學(xué)期末監(jiān)測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),若的整數(shù)有且僅有兩個(gè),則的取值范圍是()A. B.C. D.2.已知命題,,若是一個(gè)充分不必要條件,則的取值范圍是()A. B.C. D.3.已知,,若,則實(shí)數(shù)()A. B.C.2 D.4.直線與圓的位置關(guān)系是()A.相切 B.相交C.相離 D.不確定5.拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P是準(zhǔn)線l上的動(dòng)點(diǎn),若點(diǎn)A在拋物線C上,且,則(O為坐標(biāo)原點(diǎn))的最小值為()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.7.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種8.已知為等腰直角三角形的直角頂點(diǎn),以為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.9.已知,為橢圓的左、右焦點(diǎn),P為橢圓上一點(diǎn),若,則P點(diǎn)的橫坐標(biāo)為()A. B.C.4 D.910.三等分角是“古希臘三大幾何問題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個(gè)問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個(gè)三等分點(diǎn),以A為左焦點(diǎn),B,C為頂點(diǎn)作雙曲線T.設(shè)雙曲線T與弧的交點(diǎn)為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.11.雙曲線的焦距是()A.4 B.C.8 D.12.命題“對任何實(shí)數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得二、填空題:本題共4小題,每小題5分,共20分。13.若,且,則_____________14.i為虛數(shù)單位,復(fù)數(shù)______15.如圖,長方體中,,,,,分別是,,的中點(diǎn),則異面直線與所成角為__.16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知空間內(nèi)不重合的四點(diǎn)A,B,C,D的坐標(biāo)分別為,,,,且(1)求k,t的值;(2)求點(diǎn)B到直線CD的距離18.(12分)在中,是的中點(diǎn),,現(xiàn)將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.19.(12分)在實(shí)驗(yàn)室中,研究某種動(dòng)物是否患有某種傳染疾病,需要對其血液進(jìn)行檢驗(yàn).現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需要檢驗(yàn)n次;二是混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),如果檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這k份究竟哪些為陽性,就需要對它們再次取樣逐份檢驗(yàn),那么這k份血液的檢驗(yàn)次數(shù)共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的.且每份樣本是陽性結(jié)果的概率為(1)假設(shè)有5份血液樣本,其中只有2份血液樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢測出來的概率;(2)假設(shè)有4份血液樣本,現(xiàn)有以下兩種方案:方案一:4個(gè)樣本混合在一起檢驗(yàn);方案二:4個(gè)樣本平均分為兩組,分別混合在一起檢驗(yàn)若檢驗(yàn)次數(shù)的期望值越小,則方案越優(yōu)現(xiàn)將該4份血液樣本進(jìn)行檢驗(yàn),試比較以上兩個(gè)方案中哪個(gè)更優(yōu)?20.(12分)已知橢圓經(jīng)過點(diǎn),左焦點(diǎn)為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點(diǎn),過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),求的面積.21.(12分)已知橢圓的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,經(jīng)過點(diǎn)的直線與橢圓交于、兩點(diǎn),若原點(diǎn)到直線的距離為,且,求直線的方程.22.(10分)已知的展開式中二項(xiàng)式系數(shù)和為16(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)設(shè)展開式中的常數(shù)項(xiàng)為p,展開式中所有項(xiàng)系數(shù)的和為q,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】等價(jià)于,令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,作出的簡圖,數(shù)形結(jié)合只需滿足即可.【詳解】,即,又,則.令,,,當(dāng)時(shí),,時(shí),,時(shí),,在單調(diào)遞減,在單調(diào)遞增,且,且,,作出函數(shù)圖象如圖所示,若的整數(shù)有且僅有兩個(gè),即只需滿足,即,解得:故選:D2、A【解析】先化簡命題p,q,再根據(jù)是的一個(gè)充分不必要條件,由q求解.【詳解】因?yàn)槊},或,又是的一個(gè)充分不必要條件,所以,解得,所以的取值范圍是,故選:A3、D【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示計(jì)算作答.【詳解】因,,又,則,解得,所以實(shí)數(shù).故選:D4、B【解析】直線恒過定點(diǎn),而此點(diǎn)在圓的內(nèi)部,故可得直線與圓的位置關(guān)系.【詳解】直線恒過定點(diǎn),而,故點(diǎn)在圓的內(nèi)部,故直線與圓的位置關(guān)系為相交,故選:B.5、D【解析】依題意得點(diǎn)坐標(biāo),作點(diǎn)關(guān)于的對稱點(diǎn),則,求即為最小值【詳解】如圖所示:作點(diǎn)關(guān)于的對稱點(diǎn),連接,設(shè)點(diǎn),不妨設(shè),由題意知,直線l方程為,則,得所以,得,所以由,當(dāng)三點(diǎn)共線時(shí)取等號(hào),又所以最小值為故選:D6、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時(shí),,,,;,此時(shí),退出循環(huán),輸出的的為.故選:B【點(diǎn)睛】本題考查程序框圖的應(yīng)用,此類題要注意何時(shí)循環(huán)結(jié)束,建議數(shù)據(jù)不大時(shí)采用寫出來的辦法,是一道容易題.7、D【解析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D8、B【解析】設(shè),過點(diǎn)作的平行線,與平行的半徑交于點(diǎn),找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設(shè),過點(diǎn)作的平行線,與平行的半徑交于點(diǎn),則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點(diǎn)睛】本題考查異面直線所成角余弦值的計(jì)算,一般通過平移直線的方法找到異面直線所成的角,考查計(jì)算能力,屬于中等題.9、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B10、C【解析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點(diǎn)為,則由.所以,即圓的半徑為2故選:C11、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點(diǎn)睛】考查求雙曲線的焦距,基礎(chǔ)題.12、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實(shí)數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,可得,,,從而利用換底公式及對數(shù)的運(yùn)算性質(zhì)即可求解.【詳解】解:因?yàn)?,所以,,,又,所以,所以,所以,故答案為?14、【解析】利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡求解即可.【詳解】故答案為:.15、【解析】以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.16、【解析】可知B對的邊最大,再用正弦定理計(jì)算即可.【詳解】利用正弦定理可知,B對的邊最大,因?yàn)?,,所以?故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由,可得存在唯一實(shí)數(shù),使得,列出方程組,解之即可得解;(2)設(shè)直線與所成的角為,求出,再根據(jù)點(diǎn)B到直線CD的距離為即可得解【小問1詳解】解:,,因?yàn)?,所以存在唯一?shí)數(shù),使得,所以,所以,解得,所以,;【小問2詳解】解:,則,設(shè)直線與所成的角為,則,所以點(diǎn)B到直線CD的距離為.18、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質(zhì)得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因?yàn)辄c(diǎn)是的中點(diǎn),在中,由(1)易知,.過點(diǎn)作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.19、(1)(2)方案一更優(yōu)【解析】(1)分兩類,由古典概型可得;(2)分別求出兩種方案的數(shù)學(xué)期望,然后比較可知.【小問1詳解】恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢測出來分為兩種情況:第一種:前兩次檢測中出現(xiàn)一次陽性一次陰性且第三次為陽性第二種:前三次檢測均陰性,所以概率為【小問2詳解】方案一:混在一起檢驗(yàn),記檢驗(yàn)次數(shù)為X,則X的取值范圍是,,,方案二:每組的兩個(gè)樣本混合在一起檢驗(yàn),若結(jié)果呈陰性,則檢驗(yàn)次數(shù)為1,其概率為,若結(jié)果呈陽性,則檢驗(yàn)次數(shù)為3,其概率為設(shè)檢驗(yàn)次數(shù)為隨機(jī)變量Y,則Y的取值范圍是,,,,,所以,方案一更優(yōu)20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由橢圓的定義求出的值,由求出,代入,得到橢圓的方程;(Ⅱ)由點(diǎn)斜式求出直線的方程,設(shè),聯(lián)立直線與橢圓方程,求出的值,再算出的面積試題解析(Ⅰ)由橢圓的定義得:又,故,∴橢圓的方程為:.(Ⅱ)過的直線方程為,,聯(lián)立,設(shè),則,∴的面積.點(diǎn)睛:本題主要考查了求橢圓的方程,直線與橢圓相交時(shí)弦長的計(jì)算等,屬于中檔題.在(Ⅱ)中,注意的面積的計(jì)算公式21、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個(gè)量的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點(diǎn)到直線的距離公式可得出,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,代入韋達(dá)定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)若直線斜率不存在,則直線過原點(diǎn),不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點(diǎn)到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達(dá)定理可得,.,則為線段的中點(diǎn),所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三試卷:山東省煙臺(tái)市2025屆高三11月期中學(xué)業(yè)水平檢測數(shù)學(xué)試卷答案
- 2025版文化創(chuàng)意企業(yè)設(shè)計(jì)師聘用合同
- 2025承包經(jīng)營公司合同-高科技農(nóng)業(yè)種植項(xiàng)目
- 二零二五年度房屋買賣合同(含法律咨詢)打印模板
- 二零二五年度住宅小區(qū)車位租賃糾紛處理規(guī)則合同
- 2025版地下空間開發(fā)工程技術(shù)咨詢服務(wù)合同
- 2025至2030年中國財(cái)務(wù)軟件行業(yè)發(fā)展趨勢及投資前景預(yù)測報(bào)告
- 2025版貿(mào)易公司外貿(mào)業(yè)務(wù)代表聘用合同
- 二零二五版企業(yè)間商業(yè)承攬合同樣本
- 二零二五年度淋浴房環(huán)保材料研發(fā)與應(yīng)用合同
- 中級消防員考試試題及答案
- 教學(xué)設(shè)計(jì)課件比賽封面設(shè)計(jì)
- 2025年評茶員職業(yè)技能鑒定題庫(含答案)
- 數(shù)學(xué)集體備課匯報(bào)展示
- 食品生產(chǎn)企業(yè)采購管理制度
- 2025年游泳池設(shè)施設(shè)備器材安全檢查制度(二篇)
- 2025年養(yǎng)老護(hù)理員職業(yè)資格技師培訓(xùn)試題(含答案)
- 《鴻蒙應(yīng)用開發(fā)項(xiàng)目教程》全套教學(xué)課件
- 2025考研408計(jì)算機(jī)基礎(chǔ)綜合真題及答案
- 職業(yè)病危害因素檢測與評價(jià)-工作場所空氣中粉塵濃度的測定
- 四川省廣安市2024-2025學(xué)年高一下學(xué)期期末考試數(shù)學(xué)試題(含答案)
評論
0/150
提交評論