




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Towardshydrogen
definitionsbased
ontheiremissions
intensity
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthe
fullspectrum
ofenergyissues
includingoil,gasand
coalsupplyand
demand,renewable
energytechnologies,
electricitymarkets,
energyefficiency,
accesstoenergy,
demandside
managementand
muchmore.Through
itswork,theIEA
advocatespoliciesthat
willenhancethe
reliability,affordability
andsustainabilityof
energyinits
31membercountries,
11associationcountries
andbeyond.
Thispublicationandany
mapincludedhereinare
withoutprejudicetothe
statusoforsovereigntyover
anyterritory,tothe
delimitationofinternational
frontiersandboundariesand
tothenameofanyterritory,
cityorarea.
IEAmember
countries:
Australia
Austria
Belgium
Canada
CzechRepublic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
NewZealand
Norway
Poland
Portugal
SlovakRepublic
Spain
Sweden
Switzerland
RepublicofTürkiye
UnitedKingdom
UnitedStates
TheEuropean
Commissionalso
participatesinthe
workoftheIEA
IEAassociation
countries:
Argentina
Brazil
China
Egypt
India
Indonesia
Morocco
Singapore
SouthAfrica
Thailand
Ukraine
Source:IEA.
InternationalEnergyAgency
Website:
TowardshydrogendefinitionsbasedontheiremissionsintensityAbstract
IEA.CCBY4.0.
PAGE|3
Abstract
TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7Climate,EnergyandEnvironmentalMinisterialmeetinginApril2023.ThereportbuildsontheanalysisfromtheIEA’sNetZeroby2050:ARoadmapfortheGlobalEnergySectorandcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,includingtheAchievingNetZeroElectricitySectorsinG7Members,AchievingNetZeroHeavyIndustrySectorsinG7MembersandEmissionsMeasurementandDataCollectionforaNetZeroSteelIndustryreports.
Thisreportassessesthegreenhousegasemissionsintensityofthedifferenthydrogenproductionroutesandreviewswaystousetheemissionsintensityofhydrogenproductioninthedevelopmentofregulationandcertificationschemes.Aninternationallyagreedemissionsaccountingframeworkisawaytomoveawayfromtheuseofterminologiesbasedoncoloursorothertermsthathaveprovedimpracticalforthecontractsthatunderpininvestment.Theadoptionofsuchaframeworkcanbringmuch-neededtransparency,aswellasfacilitatinginteroperabilityandlimitingmarketfragmentation,thusbecomingausefulenablerofinvestmentsforthedevelopmentofinternationalhydrogensupplychains.
TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements
IEA.CCBY4.0.
PAGE|4
Acknowledgements
TowardshydrogendefinitionsbasedontheiremissionsintensitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,HeadoftheEnergyTechnologyPolicyDivision.UweRemme,HeadoftheHydrogenandAlternativeFuelsUnit,andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorsandcontributorswereSimonBennett,StavroulaEvangelopoulou,MathildeFajardy,CarlGreenfield,FrancescoPavanandAmaliaPizarroAlonso.Severalcolleaguesacrosstheagencycontributedanalyticalinput,includingTomásdeOliveiraBredariolandJér?meHilaire.LaurentAntoni,fromtheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)wasalsoacontributorandauthorofthereport.
ThefollowingIEAcolleaguescontributedwithvaluablecomments:KeisukeSadamori,LauraCozzi,DanDonner,PaoloFrankl,TimGould,IlkkaHannula,ChristopheMcGlade,PeterLeviandTiffanyVass.
LizzieSayereditedthemanuscript.EssentialsupportthroughouttheprocesswasprovidedbyCarolineAbettan,RekaKoczkaandPer-AndersWidell.ThanksalsotoPoeliBojorquez,CurtisBrainard,AstridDumond,IsabelleNonain-SemelinoftheCommunicationsandDigitalOffice.
TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheMinistryofEconomy,TradeandIndustry,Japan.
Thereportbenefitedfromtheinsightsgatheredduringahigh-levelexpertworkshopon“Achievingscale-upoflow-emissionhydrogenandammoniafornetzeroinG7countries”(heldon21February2023)andaseriesofconsultationswithJochenBardandDayanaGranfordRuiz(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TimoBollerheyandMartinErdmann(Hintco);MatthiasDeutschandMauricioBelaunde(AgoraEnergiewende);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilForSustainableDevelopment);NoévanHulstandTimKarlsson(IPHE);HeinovonMeyer(InternationalPtXHub);DariaNochevnik(HydrogenCouncil);AndreiV.Tchouvelev(HydrogenCouncil,InternationalOrganizationforStandardization);andKirstenWestphal(GermanAssociationofEnergyandWaterIndustries).
TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements
IEA.CCBY4.0.
PAGE|5
Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:OlumoyeAjaoandCurtisJenken(NationalResourcesCanada);SaoodMohamedAlnoori(OfficeoftheSpecialEnvoyforClimateChange,UnitedArabEmirates);ChelseaBaldino(InternationalCouncilonCleanTransportation);RutaBaltause(DirectorateGeneralforEnergy,EuropeanCommission);JochenBard(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TrevorBrown(AmmoniaEnergyAssociation);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity,UnitedStates);HarrietCulver,KatherineDavisandLizWharmby(DepartmentforEnergySecurityandNetZero,UnitedKingdom);MatthiasDeutsch,ZaffarHussainandLeandroJanke(AgoraEnergiewende);TudorFlorea(MinistryofEnergyTransition,France);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilforSustainableDevelopment);YukariHinoandMasashiWatanabe(MinistryofEconomy,TradeandIndustry,Japan);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);MartinLambert(OxfordInstituteforEnergyStudies,UnitedKingdom);RebeccaMaserumuleandNoévanHulst(IPHE);JonasMoberg(GreenHydrogenOrganisation);PietroMoretto(JointReserachCentre,EuropeanCommission);JaneNakano(CenterforStrategicandInternationalStudies,UnitedStates);AlejandroNu?ez(ETHZürich,Switzerland);AlloysiusJokoPurwanto(EconomicResearchInstituteforASEANandEastAsia,Indonesia);StefanoRaimondi,MarcelloCapraandRobertoCianella(MinistryofEnvironmentandEnergySecurity,Italy);SunitaSatyapal,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);PetraSchwagerandJuanPabloDavila(UnitedNationsIndustrialDevelopmentOrganization);MatthijsSoede(DirectorateGeneralforResearchandInnovation,EuropeanCommission);JanStelter(NOWGmbH);KoichiUchida(StateDepartment,UnitedStates);KirstenWestphal(GermanAssociationofEnergyandWaterIndustries);andXeniaZwanziger(FederalMinistryforEconomicAffairsandClimateAction,Germany).
Theindividualsandorganisationsthatcontributedtothisstudyarenotresponsibleforanyopinionsorjudgementsitcontains.TheviewsexpressedinthestudyarenotnecessarilyviewsoftheIEA’smembercountriesorofanyparticularfunderorcollaborator.AllerrorsandomissionsaresolelytheresponsibilityoftheIEA.
TowardshydrogendefinitionsbasedontheiremissionsintensityTableofcontents
IEA.CCBY4.0.
PAGE|6
Tableofcontents
Executivesummary 7
Introduction 11
Hydrogenanditsderivativesinanetzeroenergysystem 13
Hydrogentoday 14
Theroleofhydrogen,ammoniaandhydrogen-basedfuelsinthetransitiontonetzero 15
Tradeofhydrogen,ammoniaandhydrogen-basedfuels 20
Thecostofhydrogensupply 22
Acceleratingdeploymenttomeetambitions 28
Clearhydrogendefinitionstoaddressdeploymentbarriers 30
Internationalco-operationtofacilitatedeployment 31
Defininghydrogenaccordingtoitsemissionsintensity 33
Introduction 34
Elementsofregulationsandcertificationsystemsforhydrogen 36
Theemissionsintensityofhydrogenproductionroutes 38
EmissionsintensityandcostsofhydrogenproductioninIEAscenarios 52
Towardsaninternationalemissionsaccountingframeworktodefinehydrogen 59
Considerationsforaninternationalaccountingframework 60
Avenuesforimplementation 70
Practicalconsiderationsforeffectiveimplementation 76
ConsiderationsfortheG7 83
Annex 86
Abbreviationsandacronyms 86
Unitsofmeasure 87
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|7
Executivesummary
Aclearunderstandingoftheemissionsassociatedwithhydrogenproductioncanhelpenableinvestmentandboostscale-up
Mostlarge-scaleprojectsfortheproductionoflow-emissionhydrogenarefacingimportantbottlenecks.Only4%ofprojectsthathavebeenthusfarannouncedareunderconstructionorhavetakenafinalinvestmentdecision.Uncertaintyaboutfuturedemand,thelackofinfrastructureavailabletodeliverhydrogentoendusersandthelackofclarityinregulatoryframeworksandcertificationschemesarepreventingprojectdevelopersfromtakingfirmdecisionsoninvestment.
Transparencyontheemissionsintensityofhydrogenproductioncanbringmuch-neededclarityandfacilitateinvestment.Usingcolourstorefertodifferentproductionroutes,ortermssuchas“sustainable”,“l(fā)ow-carbon”or“clean”hydrogen,obscuresmanydifferentlevelsofpotentialemissions.Thisterminologyhasprovedimpracticalasabasisforcontractingdecisions,deterringpotentialinvestors.Byagreeingtousetheemissionsintensityofhydrogenproductioninthedefinitionofnationalregulationsabouthydrogen,governmentscanfacilitatemarketandregulatoryinteroperability.Thisreportaimstoassistgovernmentsindoingsobyassessingtheemissionsintensityofindividualhydrogenproductionroutes,forgovernmentstothendecidewhichlevelalignswiththeirowncircumstances.
Theproductionanduseofhydrogen,ammoniaandhydrogen-basedfuelsneedstoscaleup
TheG7isacornerstoneofeffortstoacceleratethescale-upoftheproductionanduseoflow-emissionhydrogen,ammoniaandhydrogen-basedfuels.G7members–Canada,France,Germany,Italy,Japan,theUnitedKingdom,theUnitedStatesandtheEuropeanUnion–accountforaroundone-quarteroftoday’sglobalhydrogenproductionanddemand.Atthesametime,G7membersarefrontrunnersindecarbonisinghydrogenproductionandtechnologydevelopmentfornewhydrogenapplicationsinend-usesectors.TheG7canuseitstechnologicalleadershipandeconomicpowertoenableagreaterincreaseintheproductionanduseoflow-emissionhydrogen.However,G7memberscannotundertakethischallengealone.Thedevelopmentofaninternationalhydrogenmarketwillrequiretheinvolvementofawiderangeofotherstakeholders,includingamongemergingeconomies.
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|8
Hydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthecleanenergytransition.Globalhydrogendemandreached94milliontonnesin2021,concentratedmainlyinitsuseasafeedstockinrefiningandindustry.Meetinggovernmentclimateambitionsrequiresastep-changeindemandcreationforlow-emissionhydrogen,particularlyinnewapplicationsinsectorswhereemissionsarehardtoabate,suchasheavyindustryandlong-distancetransport.Atthesametime,hydrogenproductionneedstobedecarbonised;today,low-emissionhydrogenrepresentslessthan1%ofglobalproduction.
Thedevelopmentofinternationalsupplychainscanhelptomeettheneedsofcountriesandregionswithlargedemandandlimitedpotentialtoproducelow-emissionhydrogen.Regionalcostdifferencesandgrowingdemandinregionswithlesspotentialtoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelscouldunderpinthedevelopmentofaninternationalhydrogenmarkettotradethesefuels,despitetheadditionalcostsarisingfromconversionandtransport.Theglobalenergycrisishasfurtherstrengthenedinterestinlow-emissionhydrogenasawaytoreducedependencyonfossilfuelsandenhanceenergysecurity,becominganewdriverforglobaltradeinhydrogen.
Hydrogendefinitionsbasedonemissionsintensitycanformthebasisforrobustregulation
Theemissionsintensityofhydrogenproductionvarieswidelydependingontheproductionroute.Today,hydrogenproductionisdominatedbyunabatedfossilfuels;emissionsneedtodecreasesignificantlytomeetclimateambitions.Thefuelandtechnologyused,therateatwhichCO2captureandstorageisapplied,andthelevelofupstreamandmidstreamemissionsallstronglyinfluencetheemissionsintensityofhydrogenproduction.Forexample,productionbasedonunabatedfossilfuelscanresultinemissionsofupto27kgCO2-eq/kgH2,dependingonthelevelofupstreamandmidstreamemissions.Conversely,producinghydrogenfrombiomasswithCO2captureandstoragecanresultinnegativeemissions,asaresultofremovingthecapturedbiogeniccarbonfromthenaturalcarboncycle.Theaverageemissionsintensityofglobalhydrogenproductionin2021wasintherangeof12-13kgCO2-eq/kgH2.IntheIEANetZeroby2050Scenario,thisaveragefleetemissionsintensityreaches6-7kgCO2-eq/kgH2by2030andfallsbelow1kgCO2-eq/kgH2by2050.
Theemissionsintensityofhydrogenproducedwithelectrolysisisdeterminedbytheemissionsfromtheelectricitythatisused.UsingthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuel
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|9
CellsintheEconomy(IPHE)
1
,renewableelectricity
2
generationhasnoassociatedemissions,resultingin0kgCO2-eq/kgH2.Inthecaseofgridelectricity,theemissionsintensityvariesgreatlybetweenpeakloadandbaseloadhours,dependingonwhichtechnologyisusedtomeetadditionaldemandfortheelectrolysers.Toreduceemissions,itisthereforeimportanttoensurethatgrid-connectedelectrolysersdonotleadtoanincreaseinfossil-basedelectricitygeneration.
Carboncaptureandstoragetechnologiescanreducedirectemissionsfromfossil-basedhydrogenproductionbutmeasurestomitigateupstreamandmidstreamemissionsareneeded.Hydrogenproductionfromunabatednaturalgasresultsinanemissionsintensityintherangeof10-14kgCO2-eq/kgH2,withupstreamandmidstreamemissionsofmethaneandCO2innaturalgasproductionbeingresponsiblefor1-5kgCO2-eq/kgH2.RetrofittingexistingassetswithcaptureofCO2fromthefeedstock-relateduseofnaturalgas(captureratearound60%)canbringtheemissionsintensitydownto5-8kgCO2-eq/kgH2.Highercapturerates(above90%)canbeachievedwithadvancedtechnologies,reducingemissionsintensityto0.8-6kgCO2-eq/kgH2,althoughnoplantsusingthesetechnologiesareinoperationyet.Athighcapturerates,theemissionsintensityofhydrogenproductionisdominatedbyupstreamandmidstreamemissions,whichaccountfor0.7-5kgCO2-eq/kgH2,underscoringtheimportanceofcuttingmethaneemissionsfromnaturalgasoperations.
Governmentsshoulddefineroadmapstodecarbonisehydrogenproduction,bothdomesticandimported,inaccordancewiththeirnationalcircumstances.Thisreportthereforedoesnotprovideagenericacceptableupperthresholdfortheemissionsintensityofhydrogenproduction.However,governmentsshouldtakeintoaccountfactorssuchasemissionsintensity,supplyvolumesandaffordabilitytoinformdecision-makingtoscaleupproductionanduseoflow--emissionhydrogen.Thehigherproductioncostoflow--emissionhydrogenandtherelativelyyoungageofexistingunabatedfossilfuel-basedhydrogenproductionassetsinthechemicalsectorarebarrierstotheuptakeoflow-emissionhydrogen.RetrofittingexistingproductionassetswithCO2captureandstoragecanbeacost-effectivenear-termoptiontopartiallydecarboniseproduction.Inregionswithabundantrenewableresources,theuseofrenewableelectricitytoproducehydrogenissettobethemostcost-effectiveoption,evenbefore2030.
1TheIPHEhasdevelopedamethodologyforcalculatingthegreenhousegasemissionsintensityofhydrogenproductionandconditioning,andisduetocompletethemethodologyforhydrogentransport.TheIPHEmethodologywillserveasthebasisforthefirstinternationalstandardonthistopicandcanserveasafirststepfortheadoptionofemissionsintensityofhydrogenproductioninregulations.
2IPHEmethodologyassignszeroemissionstosolarPV,wind,hydro-andgeothermalpower.
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|10
Referencetotheemissionsintensityofhydrogenproductioninregulationscanenableinteroperabilityandlimitmarketfragmentation
Severalcertificationsystemsorregulatoryframeworksdefiningthesustainabilityattributesofhydrogenarecurrentlybeingdeveloped,butthereisariskthatlackofalignmentmayleadtomarketfragmentation.
Existingeffortshavesomecommonalitiesinscope,systemboundaries,productionpathways,modelsforchainofcustodyandemissionsintensitylevels.Butinconsistenciesinapproachesriskbecomingabarrierforthedevelopmentofinternationalhydrogentrade.Referringtotheemissionsintensityofhydrogenproduction,basedonajointunderstandingoftheappliedmethodologyusedforregulationandcertification,canbeanimportantenablerofmarketdevelopment,facilitatingaminimumlevelofinteroperatibilityandenablingmutualrecognitionratherthanreplacingorduplicatingongoingefforts.
Regulationandcertificationthatusestheemissionsintensityofhydrogenproductionshouldalsobeabletoaccommodateadditionalsustainabilitycriteria.Governmentsandcompaniesmaywishtoconsiderotherpotentialsustainabilityrequirementswhenmakingdecisionsabouttheuseofhydrogenasacleanfuelandfeedstock.Criteriarelatedtotheoriginoftheenergysource,landorwateruse,andsocio-economicaspectssuchasworkingconditionsarealreadyincorporatedintosomeregulationsandcertificationschemes.Theuseofemissionsintensityisafirststeptoenableinteroperability,butshouldnotprecludegovernmentsandcompaniesincorporatingadditionalcriteria.Theuseof“productpassports”canhelptobringallthesecriteriatogether,aswellastostandardiseprocesses,minimisecostsandmaximisetransparency.
TowardshydrogendefinitionsbasedontheiremissionsintensityIntroduction
IEA.CCBY4.0.
PAGE|11
Introduction
TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7ClimateandEnergyMinisterialinApril2023.ThereportbuildsontheanalysisfromtheIEA’s
NetZeroby2050:ARoadmapfortheGlobalEnergySector
andcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,including
AchievingNetZeroElectricitySectorsinG7Members
,
AchievingNetZeroHeavyIndustrySectorsinG7Members
and
Emissions
MeasurementandDataCollectionforaNetZeroSteelIndustry
.
Achievingnetzeroemissionsby2050requireslarge-scaledeploymentofcleanenergytechnologiesatanunprecedentedspeed.Low-emissionhydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthedecarbonisationofsectorswithhard-to-abateemissions,suchasheavyindustryandlong-distancetransport.However,theavailabilityoftheselow-emissionfuelsistodaylimited,andeffortsareneededintheshorttermtoscaleuptheirproductionanduse.Thiswouldhelptobringproductioncostsdownandtodevelopinternationalsupplychainsthatcansupportthedecarbonisationroadmapofregionswithlimitedpotentialtoproducethesefuelsdomesticallytomeettheirgrowingdemand.
Momentumaroundhydrogen,ammoniaandhydrogen-basedfuelshasbeengrowingoverthepastyears.Theyarenowwidelyrecognisedasanimportanttooltosupportgovernmentclimateambitionsandnetzerogreenhousegasemissionscommitmentsannouncedinrecentyears.TheglobalenergycrisissparkedbyRussianFederation(hereafter,“Russia”)’sinvasionofUkrainehasfurtherstrengthenedinterestinlow-emissionhydrogeninparticular,asawaytoreducedependencyonfossilfuelsandenhanceenergysecurity.
Industryhasrespondedtothiscallforaction,andannouncementsofnewprojectstoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelsaregrowingataveryimpressivespeed.However,onlyasmallfractionoftheseprojectshavesecuredtheinvestmentrequiredtobeginconstruction.Thelackofclarityinregulatoryframeworksanduncertaintyaroundcertificationareimportantfactorscontributingtotheslowprogressinreal-worldimplementation.
Theuseofterminologiesthatarebasedoncolourstodescribedifferentproductiontechnologies(e.g.“grey”hydrogenforproductionbasedonunabatedfossilfuels,“blue”hydrogenforproductionbasedonfossilfuelswithcarboncaptureandstorage,or“green”hydrogenproducedthroughuseofrenewableelectricityin
IEA.CCBY4.0.
PAGE|12
electrolysers),orontermssuchas“sustainable”,“l(fā)ow-carbon”or“clean”hydrogenasameanstodistinguishitfromunabatedfossilfuel-basedproductionhasprovedimpracticalforuseincontractsthatunderpininvestment.Thereiscurrentlynointernationalagreementontheuseoftheseterms,whichgeneratesuncertaintyamongthedifferentplayersinvolvedinthenascenthydrogen,ammoniaandhydrogen-basedfuelsmarkets.
Theuncertaintycreatedbythelackofregulatoryclarityishinderingtheinvestmentrequiredtoscaleupproductionanddevelopsupplychains.Clarityonregulationsandcertificationprocessesneededtodemonstrateregulatorycompliancecanreassuredifferentmarketplayers,especiallyfirstmovers.Defininghydrogenbasedonthegreenhousegas(GHG)emissionsintensityofitsproductioncanhelptoprovideclaritytoprojectdevelopersandinvestorsontheemissionsintensityoftheirproductanditscompliancewithregulatoryandmarketrequirements.Inaddition,itcanenableacertainlevelofinteroperabilityofregulationsacrossdifferentcountriesandallowmutualrecognitionofcertificationschemes,whichcanminimisemarketfragmentation.
Thisreportreviewswaysforputtingemissionsintensityatthecentreofregulationandcertification.ItappliesthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)toassesstheGHGemissionsofhydrogenproductioninordertoillustratetherangeofemissionsassociatedwithdifferenthydrogenproductionroutes.Thereportsetsoutaroutetoimplementanemissionsaccountingframeworkthatcanhelpgovernmentstofacilitateinteroperabilityandminimisemarketfragmentationinordertounlockinvestmentandspeedupdeployment.
TheG7bringstogethersomeoftheworld’slargestadvancedeconomies,collectivelyaccountingforabout40%ofglobalGDPandroughlyone-quarterofglobalhydrogenproductionanddemand.Moreover,G7membersareamongtheleadingcountriesintheimplementationofpoliciestosupportthescale-upofproductionoflow-emissionhydrogen,ammoniaand
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)《語(yǔ)言學(xué)》專業(yè)題庫(kù)- 語(yǔ)言結(jié)構(gòu)對(duì)交際行為的影響
- 2025年高壓電工考試題庫(kù):高壓繼電保護(hù)原理與運(yùn)行維護(hù)試題
- 記者演講稿(集合15篇)
- 2025年大學(xué)《波斯語(yǔ)》專業(yè)題庫(kù)- 波斯語(yǔ)專業(yè)學(xué)生成為跨文化傳播的推動(dòng)者
- 2025年大學(xué)《捷克語(yǔ)》專業(yè)題庫(kù)- 捷克語(yǔ)翻譯實(shí)踐經(jīng)驗(yàn)
- 達(dá)標(biāo)測(cè)試人教版八年級(jí)上冊(cè)物理聲現(xiàn)象《聲音的產(chǎn)生與傳播》專題訓(xùn)練試題(含詳細(xì)解析)
- 2025年人力資源管理師專業(yè)技能考核試卷:?jiǎn)T工績(jī)效評(píng)估方法經(jīng)典案例試題
- 2025年大學(xué)《語(yǔ)言學(xué)》專業(yè)題庫(kù)- 文字學(xué)在文學(xué)作品評(píng)析中的應(yīng)用
- 2025年危險(xiǎn)化學(xué)品安全管理人員培訓(xùn)考試題庫(kù)
- 2025年大學(xué)《馬來(lái)語(yǔ)》專業(yè)題庫(kù)- 馬來(lái)文學(xué)作品賞析研究
- 英國(guó)的社會(huì)和文化
- 穩(wěn)定型心絞痛護(hù)理查房
- 中試平臺(tái)運(yùn)營(yíng)管理制度
- 會(huì)計(jì)師i事務(wù)所公司管理制度
- 戲劇知識(shí)教學(xué)課件
- CJ/T 469-2015燃?xì)鉄崴骷安膳癄t用熱交換器
- 初中數(shù)學(xué)實(shí)驗(yàn)教學(xué)探索計(jì)劃
- 倉(cāng)儲(chǔ)項(xiàng)目項(xiàng)目計(jì)劃書
- 2025年高處作業(yè)證理論考試練習(xí)題(100題)含答案
- 2025-2030年中國(guó)橋梁鋼構(gòu)行業(yè)競(jìng)爭(zhēng)格局研究報(bào)告
- 盆底級(jí)考試題及答案
評(píng)論
0/150
提交評(píng)論