




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、復(fù)變函數(shù)與積分變換柯西積分定理第1頁,共14頁,2022年,5月20日,13點12分,星期二問題:復(fù)變函數(shù)f(z)=u(x,y)+iv(x,y)滿足什么條件在單連通區(qū)域D內(nèi)沿閉路徑的積分為零?要使只要這只須u與v具有一階連續(xù)偏導(dǎo)數(shù)且ux=vy, uy=-vx.Cauchy: 若f(z)在單連通區(qū)域D內(nèi)解析,且f(z)連續(xù),則對D內(nèi)任意閉曲線C有第2頁,共14頁,2022年,5月20日,13點12分,星期二Cauchy-Coursat定理: 若f(z)在單連通區(qū)域D內(nèi)解析,則對D內(nèi)任意閉曲線C有第3頁,共14頁,2022年,5月20日,13點12分,星期二二、原函數(shù)與不定積分推論:如果函數(shù) f
2、(z)在單連通域D內(nèi)處處解析, C屬于D,與路徑無關(guān)僅與起點和終點有關(guān)。其中C: 。固定z0,z1=z在D內(nèi)變化,于是 在D內(nèi)確定了關(guān)于z的單值函數(shù):變上限積分。第4頁,共14頁,2022年,5月20日,13點12分,星期二定理2 如果函數(shù) f (z)在單連通域D內(nèi)解析, 則F(z) 在D內(nèi)也是解析的,且證明:第5頁,共14頁,2022年,5月20日,13點12分,星期二因f(z)在D內(nèi)解析,故f(z)在D內(nèi)連續(xù)第6頁,共14頁,2022年,5月20日,13點12分,星期二特別地定義:若在單連通區(qū)域D內(nèi)恒有F(z)=f(z),則稱F(z)為f(z)的一個原函數(shù).f(z)的原函數(shù)的全體稱為f(z
3、)的不定積分,記為解析函數(shù)的原函數(shù)仍為解析函數(shù)第7頁,共14頁,2022年,5月20日,13點12分,星期二例題1C 如圖所示: 存在 f (z)的解析單連通域D包含曲線 C ,故積分與路徑無關(guān),僅與起點和終點有關(guān)。解:從而第8頁,共14頁,2022年,5月20日,13點12分,星期二這里D為復(fù)連通域。第9頁,共14頁,2022年,5月20日,13點12分,星期二可將柯西積分定理推廣到多連通域的情況,有定理2 假設(shè)C及C1為任意兩條簡單閉曲線, C1在C內(nèi)部,設(shè)函數(shù) f (z)在C及C1所圍的二連域D內(nèi)解析, 在邊界上連續(xù),則證明:取這說明解析函數(shù)沿簡單閉曲線積分不因閉曲線在區(qū)域內(nèi)作連續(xù)變形而改變它的值。-閉路變形原理第10頁,共14頁,2022年,5月20日,13點12分,星期二推論(復(fù)合閉路定理):(互不包含且互不相交), 所圍成的多連通區(qū)域, 第11頁,共14頁,2022年,5月20日,13點12分,星期二例題2C為包含0與1的任何正向簡單閉曲線。解: (由閉路變形原理)第12頁,共14頁,2022年,5月20日,13點12分,星期二第13頁,共14頁,2022年,5月20日,13點12分,星期二 從以上例子可以看出,復(fù)合閉路定理可以把沿任意簡單閉曲線上的積分化為以所圍奇點為中心的圓周上的積分,也就是說,閉曲線任意變形,只要在變形過程中不經(jīng)過函數(shù)f(z)的奇點,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年劇毒化學(xué)品運(yùn)輸車安全檢測與預(yù)防性維護(hù)服務(wù)協(xié)議
- 2025年綠色建材生產(chǎn)與供應(yīng)企業(yè)勞動合同模板
- 2025年智慧養(yǎng)老社區(qū)法律顧問專項服務(wù)合同
- 2025年度高端茶葉品牌代理銷售合同(茶藝體驗與品牌連鎖加盟)
- 2025年現(xiàn)代廠房物業(yè)管理服務(wù)合同全方位服務(wù)體系
- 2025年快遞行業(yè)綠色物流區(qū)域承包及環(huán)保責(zé)任合作協(xié)議
- 2025年智能網(wǎng)聯(lián)汽車租賃與深度維護(hù)服務(wù)專項合同
- 2025年智能養(yǎng)老院老人生活輔助設(shè)備租賃協(xié)議
- 水彩筆裝飾畫課件
- 2025年現(xiàn)代物流園區(qū)場地租賃與供應(yīng)鏈商業(yè)運(yùn)營合作協(xié)議
- 高等院校畢業(yè)生轉(zhuǎn)正定級審批表-6
- 賈寧財務(wù)講義:人人都需要的財務(wù)思維
- 紅星照耀中國選擇題及答案50道
- 開放性傷口止血包扎技術(shù)課件
- 重癥患者中心靜脈導(dǎo)管管理中國專家共識(2022版)
- 環(huán)境綜合應(yīng)急預(yù)案
- 氯甲烷泄露應(yīng)急預(yù)案
- 2.PaleoScan詳細(xì)操作流程
- PLC西門子S7-1200應(yīng)用技術(shù)完整全套教學(xué)課件
- 蘇州銀行總行信息科技部招聘考試真題2022
- 安裝電工電氣調(diào)試員安全技術(shù)操作規(guī)程
評論
0/150
提交評論