




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知滿足,,則在上的投影為()ABCD22若雙曲線:的一條漸近線方程為,則( )ABCD3已知
2、函數(shù)則函數(shù)的圖象的對稱軸方程為( )ABCD4 若數(shù)列滿足且,則使的的值為( )ABCD5已知角的終邊經(jīng)過點P(),則sin()=ABCD6如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則( )ABCD7下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是( )A正方體B球體C圓錐D長寬高互不相等的長方體8已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是( )ABCD9某四棱錐的三視圖如圖所示,該幾何體的體積是( )A8BC4D10在的展開式中,的系數(shù)為( )A-120B120C-15D1511已知是雙曲線的兩
3、個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為( )ABCD12已知集合,若AB,則實數(shù)的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,半圓的直徑AB6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為 .14已知函數(shù) 函數(shù) ,其中,若函數(shù) 恰有4個零點,則的取值范圍是_15若、滿足約束條件,則的最小值為_.16的展開式中二項式系數(shù)最大的項的系數(shù)為_(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.18(12分)
4、已知橢圓的焦點為,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設(shè)點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.19(12分)在平面直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得最大值時直線的直角坐標方程.20(12分)已知正實數(shù)滿足 .(1)求 的最小值.(2)證明:21(12分)如圖為某大江的一段支流,岸線與近似滿足,寬度為圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,
5、且滿足岸線,現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切設(shè) (1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?22(10分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)向量投影的定義,即可求解
6、.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎(chǔ)題.2A【解析】根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.3C【解析】,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.4C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C5A【解析】由題意可得三角函數(shù)的定義可知:,則:本題選擇A選項.6A【解析】
7、作于,于,分析可得,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.7C【解析】根據(jù)基本幾何體的三視圖確定【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的
8、長方體的三視圖是三個兩兩不全等的矩形故選:C【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵8A【解析】先分別判斷每一個命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題當時,沒有零點,所以命題是假命題所以是真命題,是假命題,是假命題,是假命題故選:【點睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象, 考查學(xué)生對這些知識的理解掌握水平
9、.9D【解析】根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力屬于中等題.10C【解析】寫出展開式的通項公式,令,即,則可求系數(shù)【詳解】的展開式的通項公式為,令,即時,系數(shù)為故選C【點睛】本題考查二項式展開的通項公式,屬基礎(chǔ)題11B【解析】首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面
10、積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.12D【解析】先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】.14【解析】, ,函數(shù)y=f(x)g(x)恰好有四個零點,方程f(x)g(x)=0有四個解,即f(x)+f(2x)b=0有四個解,即函數(shù)y=f(x)+f(2x
11、)與y=b的圖象有四個交點, ,作函數(shù)y=f(x)+f(2x)與y=b的圖象如下, ,結(jié)合圖象可知, b2,故答案為.點睛: (1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a)的形式時,應(yīng)從內(nèi)到外依次求值(2)當給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍15【解析】作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應(yīng)的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解
12、得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.165670【解析】根據(jù)二項式展開的通項,可得二項式系數(shù)的最大項,可求得其系數(shù).【詳解】二項展開式一共有項,所以由二項式系數(shù)的性質(zhì)可知二項式系數(shù)最大的項為第5項,系數(shù)為.故答案為:5670【點睛】本題考查了二項式定理展開式的應(yīng)用,由通項公式求二項式系數(shù),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見詳解;(2)或或【解析】(1)(2)首先用基本不等式得到
13、,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應(yīng)用基本不等式求最值時要滿足“一正二定三相等”.18(1);(2)當0時,點O到直線MN的距離為定值.【解析】(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結(jié)論【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為(2)在時,
14、設(shè)直線方程為,原點到此直線的距離為,即,由,得,所以,所以當時,為常數(shù)若,則,綜上所述,當0時,點O到直線MN的距離為定值.【點睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運算求解能力解題方法是“設(shè)而不求”法在直線與圓錐曲線相交時常用此法通過韋達定理聯(lián)系已知式與待求式19(1)曲線,曲線.(2).【解析】(1)用和消去參數(shù)即得的極坐標方程;將兩邊同時乘以,然后由解得直角坐標方程.(2)過極點的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡得故:將兩邊同時乘以,得因為,所以得的直角坐標方程.(2)設(shè)直線的極坐標方程由,得,由,得故當時,取得最
15、大值此時直線的極坐標方程為:,其直角坐標方程為:.【點睛】考查直角坐標方程、極坐標方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)用圓的極坐標方程中的幾何意義求距離的的最大值方法;中檔題.20(1);(2)見解析【解析】(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為 ,所以 因為 ,所以 (當且僅當 ,即 時等號成立),所以(2)證明:因為 ,所以 故 (當且僅當 時,等號成立)【點睛】本題考查了基本不等式的應(yīng)用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.21(1),定義域是(2)百萬【解析】(1)以為原點,直線為軸建立如圖所示的直角坐標系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系 設(shè),則,因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是(2)要使建造此通道費用最少,只要通道的長度即最小令,得,設(shè)銳角,滿足,得列表:0減極小值增所以時,所以建造此通道的最少費用至少為百萬元【點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新型電梯設(shè)備采購與維護管理協(xié)議
- 2025版房地產(chǎn)認籌協(xié)議正規(guī)范本(含社區(qū)教育配套設(shè)施)
- 二零二五年度房地產(chǎn)開發(fā)企業(yè)物業(yè)股權(quán)轉(zhuǎn)讓協(xié)議
- 二零二五年度離婚協(xié)議書起草與調(diào)解合同
- 二零二五年基金交易傭金支付協(xié)議
- 2025版房屋租賃合同中關(guān)于租賃物使用限制的約定
- 2025防火窗產(chǎn)品定制設(shè)計與采購一體化合同
- 二零二五電商物流配送與倉儲管理培訓(xùn)合同
- 2025版文化產(chǎn)業(yè)擔(dān)保借款合同模板
- 2025版綠色建筑拆除與重建工程承包合作協(xié)議
- 《植物與植物生理》課程標準
- 腳手架作業(yè)危險源辨識、評價與分級管控措施表
- 2023固體礦產(chǎn)資源量估算規(guī)程第2部分:幾何法
- 高風(fēng)險供應(yīng)商管理程序(經(jīng)典-專業(yè)-建議收藏)
- 高度10米的滿堂腳手架施工方案
- 人身權(quán)教學(xué)課件
- 電子百拼設(shè)計練習(xí)題(智PU含答案小高)
- AAR應(yīng)用教學(xué)講解課件
- 標準倉單質(zhì)押融資綜合業(yè)務(wù)解析
- 某城投公司“十四五”規(guī)劃編制指南稿
- 測量管理體系管理評審輸入表
評論
0/150
提交評論