




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第四章習(xí)題參考答案 P 1357. 1)用OLS法建立居民人均消費(fèi)支出與可支配收入的線性模型。create u 20; data consump income;ls consump c incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMER-squared Mean dependent varAdjusted R-squared . dependent var.
2、 of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)線性模型如下: CONSUMP = 5389 + *INCOME2)檢驗(yàn)?zāi)P褪欠翊嬖诋惙讲钚?i) 圖:是否有明顯的散點(diǎn)擴(kuò)大/縮小/復(fù)雜型趨勢(shì) scat income consumpii)解釋變量殘差圖:是否形成一條斜率為0的直線 scat income resid2 或者 genr ei2=resid2; scat income
3、ei2由兩個(gè)圖形,均可判定存在遞增型異方差。 還可以用帕克檢驗(yàn),戈里瑟檢驗(yàn),戈德菲爾德-匡特檢驗(yàn),懷特檢驗(yàn)等方法。iii) 戈德菲爾德-匡特檢驗(yàn):共有20個(gè)樣本,去掉中間1/4個(gè)樣本(4個(gè)),剩余大樣本、小樣本各8個(gè)。Sort income; smpl 1 8; ls consump C incomeSmpl 13 20; ls consump C income,存在異方差。iV)懷特檢驗(yàn):因?yàn)橹挥幸粋€(gè)變量,故是否含有交叉項(xiàng)是一樣的。 Viewresidual testwhite heteroskedastcity(cross terms / no cross terms )White Het
4、eroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityDependent Variable: RESID2Method: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMEINCOME2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike in
5、fo criterionSum squared resid+10 Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic),存在異方差。還可以通過(guò)概率判定存在異方差。3)若存在異方差,用適當(dāng)?shù)姆椒ü烙?jì)模型對(duì)數(shù)(加權(quán)最小二乘法)ls consump C income; genr eijdz=abs(resid)ls(w=1/eijdz) consump C incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Incl
6、uded observations: 20Weighting series: 1/EIJDZVariableCoefficientStd. Errort-StatisticProb. CINCOMEWeighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Pro
7、b(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Sum squared residDurbin-Watson statWhite Heteroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: STD_RESID2Method: Least SquaresSample: 1
8、 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOME或,均可判定加權(quán)處理后的模型不存在異方差。模型經(jīng)取對(duì)數(shù)或加權(quán)處理都可以一定程度地消除異方差性。ls log(consump) C log(income); genr eijdz=abs(resid);ls(w=1/eijdz) log(Consump) C log(Income)普通最小二乘模型CONSUMP = 5389 + *INCOME加權(quán)最小二乘模型 CONSUMP = + *INCOME對(duì)數(shù)模型:LOG(CONSUMP)=+
9、*LOG(INCOME)加權(quán)對(duì)數(shù)模型:LOG(CONSUMP)=+ *LOG(INCOME)對(duì)各種模型的White檢驗(yàn)結(jié)果,綜合如下模型不取對(duì)數(shù)F-statisticProbabilityObs*R-squaredProbability模型取對(duì)數(shù)F-statisticProbabilityObs*R-squaredProbability模型不取對(duì)數(shù),但加權(quán)F-statisticProbabilityObs*R-squaredProbability模型取對(duì)數(shù),且加權(quán)F-statisticProbabilityObs*R-squaredProbability可見(jiàn),各種方法都可以起到抑制異方差的效果
10、。8. 1)若采用對(duì)數(shù)模型,是否存在序列相關(guān)性ls log(industry) C log(invest)Dependent Variable: LOG(INDUSTRY)Method: Least SquaresSample: 1901 1921Included observations: 21VariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info cri
11、terionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)LOG(INDUSTRY) = 1. + *LOG(INVEST)i) 散點(diǎn)圖ii) 隨t變化的散點(diǎn)圖 由兩個(gè)圖形,均可判定存在正序列相關(guān)。還可以利用回歸檢驗(yàn)法,D -W檢驗(yàn),拉格朗日乘數(shù)檢驗(yàn)等方法。iii) D -W檢驗(yàn)(DL(21, =, DU(21, =.= < DL(21, 2,=,至少存在一階正自相關(guān);但.只適用判別一階自相關(guān)。iv) 拉格朗日乘數(shù)檢驗(yàn)Breusch-Godf
12、rey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityVariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent varLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)一階LM Test:LM TestRESID(-1)的t統(tǒng)計(jì)
13、量顯著(P=<),至少存在一階自相關(guān)。2)按照一階自相關(guān),用杜賓兩步法和廣義最小二乘法估計(jì)原模型。杜賓兩步法:ls y c y(-1) x x(-1)y(-1)前面的系數(shù):,代回差分模型,再次進(jìn)行OLS估計(jì)得到原模型的參數(shù)估計(jì)量,即 。genr y = log(industry); genr x = log(invest);Step 1: ls y c y(-1) x x(-1)Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjus
14、ting endpointsVariableCoefficientStd. Errort-StatisticProb. CY(-1)XX(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Step 2: ls y - * y(-1) c x - * x
15、(-1)Dependent Variable: *Y(-1)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C*X(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid S
16、chwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic).= 介于 DL(21-1, 2,=與DU(21-1, 2,=之間,不能判別是否存在一階正自相關(guān),但可由拉格朗日乘數(shù)法判斷,此時(shí)不存在序列相關(guān)性。Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least Squar
17、esVariableCoefficientStd. Errort-StatisticProb. C*X(-1)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)拉格朗日乘數(shù)檢驗(yàn):D-W stat: > ,不存在序列相關(guān)性。所以 矯正后
18、的模型:LOG(INDUSTRY) = + *LOG(INVEST)原模型:LOG(INDUSTRY) = 1. + *LOG(INVEST)廣義差分法ls y c x ar(1) (不能判定是否存在一階自相關(guān))Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsConvergence achieved after 15 iterationsVariableCoefficientStd. Errort-Sta
19、tisticProb. CXAR(1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)但由LM檢驗(yàn):概率為>,故此時(shí)不存在序列相關(guān)性。因此模型只存在一階自相關(guān)性。Breusch-Godfrey Serial Correlation LM Test:F
20、-statisticProbabilityObs*R-squared ProbabilityDependent Variable: RESIDVariableCoefficientStd. Errort-StatisticProb. CXAR(1)RESID(-1)Durbin-Watson stat Prob(F-statistic)模型為 Y = + *X + * AR(1) 與杜賓兩步法矯正的模型:LOG(INDUSTRY) = + *LOG(INVEST) 非常接近。廣義最小二乘法若僅存在一階自相關(guān)ls log(industry) C log(invest) genr resid_co
21、rr = residls resid_corr resid_corr(-1) 注:resid是內(nèi)置變量;Dependent Variable: RESID_CORRMethod: Least SquaresVariableCoefficientStd. Errort-StatisticProb. CRESID_CORR(-1)R-squared Mean dependent varDurbin-Watson stat Prob(F-statistic)直接計(jì)算 模型為L(zhǎng)OG(INDUSTRY)=+*LOG(INVEST),誤差偏大。3)采用差分形式,估計(jì)原模型。ls D(industry) C
22、 D(invest)ls industryindustry(-1) C investinvest(-1)Dependent Variable: D(INDUSTRY)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. CD(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var
23、. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least SquaresVariableCoeffic
24、ientStd. Errort-StatisticProb. CD(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)原模型存在一階正自相關(guān),但經(jīng)過(guò)一階自相關(guān)差分處理后不存在序列相關(guān)性(.= > 或=>)。模型為:
25、D(INDUSTRY) = + *D(INVEST)說(shuō)明:在有的方法不能判別自相關(guān)性時(shí),可以用其他方法測(cè)試。9. 說(shuō)明下述回歸模型是否可靠Ls CONSUMP C INCOME WEALTHDependent Variable: CONSUMPMethod: Least SquaresSample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb. CINCOMEWEALTHR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schw
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大型商業(yè)街區(qū)改造項(xiàng)目社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估與城市風(fēng)貌保護(hù)研究報(bào)告
- 工業(yè)互聯(lián)網(wǎng)網(wǎng)絡(luò)運(yùn)維 課件 任務(wù)2.2 網(wǎng)絡(luò)拓?fù)湟?guī)劃
- 數(shù)列性質(zhì)題目及答案
- 苔題目及答案解析
- 炭塊運(yùn)行工試題及答案
- 養(yǎng)殖魚塘管理辦法
- 兼職人才管理辦法
- 內(nèi)業(yè)資料管理辦法
- 內(nèi)部借款管理辦法
- 內(nèi)部計(jì)件管理辦法
- 蜘蛛車專項(xiàng)施工方案
- 海洋牧場(chǎng)與行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- iOS基礎(chǔ)知識(shí)培訓(xùn)課件
- 無(wú)人機(jī)教員聘用協(xié)議書
- 車務(wù)管理競(jìng)聘
- (2025)燃?xì)庹{(diào)壓器項(xiàng)目可行性研究報(bào)告寫作范本(一)
- 《幕墻工程設(shè)計(jì)與施工技術(shù)》課件
- 網(wǎng)絡(luò)安全態(tài)勢(shì)建模-深度研究
- HY/T 0382-2023海岸帶生態(tài)系統(tǒng)減災(zāi)功能評(píng)估技術(shù)導(dǎo)則紅樹林和鹽沼
- 無(wú)人機(jī)基礎(chǔ)知識(shí)
- 江華瑤族自治縣耕地保護(hù)國(guó)土空間專項(xiàng)規(guī)劃(2021-2035年)
評(píng)論
0/150
提交評(píng)論