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Three-dimensional mixing in Stokes flow: the partitioned pipe mixer problem revisited
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Abstract – The velocity field and mixing behaviour in the so-called partitioned pipe mixer were studied. Starting with the same physical model as in
previous studies, an exact analytical solution was developed which yields a more accurate description of the flow than the previously used approximate
solution. Also, the results are in better accordance with the reported experimental data. 1999 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The aim of the present paper is to study the three-dimensional creeping flow in an infinitely long cylindrical
pipe with internal walls, that divide the pipe into a sequence of semicircular ducts. Such a system, called the
‘partitioned pipe mixer’ (PPM) was introduced by Khakhar et al. [1] as a prototype model for the widely used
Kenics static mixer (Middleman [2]).

In the Kenics mixer each element is a helix, twisted on a 180◦, plate; elements are arranged axially within
a cylindrical tube so that the leading edge of an element is at right angles to the trailing edge of the previous
one. Computational fluid dynamics tools make a straightforward numerical simulation of this kind of three-
dimensional flow feasible (Avalosse and Crochet [3], Hobbs and Muzzio [4], Hobbs et al. [5]). However, such
simulations do require significant computational resources, especially when studying the effect of varying
parameters on the mixing process. Therefore, simplified analytical models, that give the possibility of fast
simulations of the process (or mimic its features closely enough), are still useful.

The PPM model of the essentially three-dimensional flow was highly idealized, nevertheless retaining the
main features of the flow under study. The model involves two superimposed, independent, two-dimensional
flow fields: a cross-sectional (rotational) velocity field and a fully developed axial Poiseuille profile in every
semicircular duct. This gives two independent two-dimensional boundary problems instead of the three-
dimensional problem. The solution proposed by Khakhar et al. [1] for the cross-sectional velocity field was
only an approximate one. There exists, however, ‘exact’ analytical solutions in a closed form.

In the present paper we use these exact solutions to examine the mixing properties in this three-dimensional
mixer. Important differences in some mixing patterns were obtained, and our results resemble more closely the
available experimental results of Kusch and Ottino [6].

* Correspondence and reprints: Department of Mechanical Engineering, Building W.h. 0.119, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands; e-mail: gerrit@wfw.wtb.tue.nl



784 V.V. Meleshko et al.

2. Velocity field in PPM

Consider the interior of an infinite cylinder 06 r 6 a, 06 θ 6 2π, |z| <∞, which contains inside a
sequence of rigid rectangular plates of lengthL (see, for example, figure 6.2 in Ottino [7]). Neighbouring
plates are placed orthogonally to each other, namely 06 r 6 a, θ = 0, π, 2kL 6 z 6 (2k + 1)L and
06 r 6 a, θ = π/2,3π/2, (2k+1)L6 z6 (2k+2)L, wherek = 0,±1,±2, . . . . The flow in all semicircular
ducts is induced by a constant pressure gradient∂p/∂z and the uniform rotation of the cylindrical wallr = a
with constant velocityV ; the inner walls remain fixed. Following Khakhar et al. [1], we assume that the axial
velocity profile is fully developed in every cross-section (neglecting transition effects between two plates) and
cross-sectional velocitiesvr andvθ are such as they would be in case of an infinitely long semicircular duct.
In the Stokes approximation the steady velocity field with componentsvr, vθ and vz is defined from two
uncoupled independent solutions of the two-dimensional problems

11ψ = 0, (1)

µ1vz =−∂p
∂z

(2)

in each of the semi-circular domains. Here,1 stands for the Laplace operator in polar coordinates,µ is the
fluid viscosity, andψ(r, θ) represents the stream function of the cross-sectional flow with

vr = 1

r

∂ψ

∂θ
, vθ =−∂ψ

∂r
. (3)

In what follows we consider the ‘basic’ domain 06 r 6 a, 06 θ 6 π, 06 z 6 L; the solutions for other
domains can be obtained straightforwardly from this basic one. The no-slip boundary conditions in terms ofψ

andvz are

ψ = 0,
∂ψ

∂r
=−V for r = a, 06 θ 6 π,

ψ = 0,
∂ψ

∂r
= 0 for 06 r 6 a, θ = 0, π

(4)

and

vz = 0 for r = a, 06 θ 6 π,
vz = 0 for 06 r 6 a, θ = 0, π,

(5)

for Eqs (1) and (2), respectively.

The biharmonic problem (1), (4) admits an exact analytical solution:

ψ = 2V

4− π2

(
πr sinθ − π(a

2− r2)+ 4ar sinθ

2a
arctan

2ar sinθ

a2− r2

)
, (6)

which can be obtained in the following way.

Let us introduce the bipolar coordinates(ξ, η) such that the two poles of the coordinates are located on the
x-axes at the points(±a,0):

x + iy = ai cot
ξ + iη

2
. (7)
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Then

x = r cosθ = J sinhη, y = r sinθ = J sinξ, (8)

wherea/J = coshη − cosξ , and the quantity 1/J is the first Lame differential parameter of this orthogonal
coordinate system. This system for the two-dimensional biharmonic equation was firstly used in Joukowski [8];
see Joukowski and Chaplygin [9] for the exact solution of the problem for the Stokes flow between eccentric
cylinders.

The semicircle 06 r 6 a, 06 θ 6 π in polar coordinates transforms into the strip−∞6 η 6∞, π/26
ξ 6 π in bipolar coordinates. The biharmonic equation (1), which must be satisfied by the stream functionψ ,
in bipolar coordinates is written as(

∂4

∂ξ4
+ 2

∂4

∂ξ2η2
+ ∂4

∂η4
+ 2

∂2

∂ξ2
− 2

∂2

∂η2
+ 1

)
9 = 0 (9)

for the auxiliary function9 =ψ/J .

By means of the equality

∂9

∂ξ
= 1

J

∂ψ

∂ξ
+ψ ∂(1/J )

∂ξ
= ∂ψ

∂nξ
+ψ sinξ

a
, (10)

(wherenξ denotes the outer normal to the lineξ = constant) we can reformulate the boundary conditions (3)
in terms of9 as

9 = 0,
∂9

∂ξ
= 0 atξ = 1

2
π, |η|6∞,

9 = 0,
∂9

∂ξ
= V at ξ = π, |η|6∞.

(11)

By choosing a solution of Eq. (9),

9 =Asinξ +B cosξ +Cξ sinξ +Dξ cosξ, (12)

we can satisfy all boundary conditions (11), provided that the values of the constantsA,B,C,D are

A= 2π

π2− 4
V, B =− 2π2

π2− 4
V, C =− 4

π2− 4
V, D = 2π

π2− 4
V. (13)

Returning from9(ξ) in (12) to the stream functionψ(r, θ) by means of equalities

J sinξ = r sinθ, J cosξ = r
2− a2

2a
, ξ = π − arctan

2ar sinθ

a2− r2
, (14)

after some reductions, we come to expression (6).

The behaviour of the stream functionψ near the corner point(a,0) can be obtained from the expansion of
expression (6) into a Taylor series in the local polar coordinates(ρ,χ) with x = a − ρ sinχ, y = ρ cosχ . The
first term linear inρ is

ψloc=− 4Vρ

π2− 4

(
χ cosχ + 1

2
πχ sinχ − π

2

4
sinχ

)
, (15)
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(a) (b)

Figure 1. Streamline patterns (contour plot of stream function) of (a) analytical solution (6) and (b) one-term approximate solution (16). Contour lines
are equidistant with the same step in both plots. Dashed line in (b) represents the contour, which is absent in (a).

which corresponds to the ‘scraping’ solution (Goodier [10], Taylor [11]) for a quarter planeρ > 0, 06 χ 6 π/2
with the constant tangential velocity−V applied at the planeχ = 0.

Figure 1(a)shows contour levels of the stream function (6). The cross-sectional flow exhibits a single vortex
cell with one elliptic stagnation point at (0.636a,π/2).

The previous studies (Khakhar et al. [1], Ottino [7]) suggested the approximate one-term solution of the
boundary problem (1), (4):

9∗ = 4V a

3γ

(
r

a

)2{
1−

(
r

a

)γ}
sin2 θ, γ = (11/3)1/2− 1≈ 0.915, (16)

which has been obtained by a variational method. This expression (16), however, does not satisfy both the
governing biharmonic equation (1) and the no-slip condition at the moving boundary! It turns out that the
tangential velocity at the boundaryr = a varies as(4/3)V sin2 θ instead of being constantV . Therefore, the
velocity is overestimated (up to 33% at the circular boundary) in some zones far from the flat boundary, and it is
artificially smoothed near corners. The contour plot of the stream function according to one-term solution (16)
is presented infigure 1(b).

The solution of boundary problem (2), (5) for the fully developed axial flow in a semicircular duct reads
(Ottino [7]):

vz = 16π

π2− 8
〈vz〉

∞∑
k=1

{(
r

a

)2k−1

−
(
r

a

)2} sin[(2k − 1)θ]
(2k− 1){4− (2k − 1)2} , (17)

where

〈vz〉 = 8− π2

4π2

1

µ

∂p

∂z
a2

is the average axial velocity. Using straightforward transformations and tables of infinite sums (Prudnikov et
al. [12]), we can present expression (17) in a closed form:

vz = 2π

π2− 8
〈vz〉

{
−π r

2

a2
sin2 θ +

(
r

a
− a
r

)
sinθ − 1

4

(
r2

a2
− a

2

r2

)
sin(2θ)

× ln
r2+ 2ar cosθ + a2

r2− 2ar cosθ + a2
+ 1

2

[
2−

(
r2

a2
− a

2

r2

)
cos(2θ)

]
arctan

2ar sinθ

a2− r2

}
, (18)

which is preferable for numerical simulations of the advection process. It is worth mentioning that the first
three terms of the infinite sum (17) used in Khakhar et al. [1] and Ottino [7] provide reasonable accuracy with
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Figure 2.Contour plots of the axial velocityvz : solid lines correspond to the exact expression (18), dotted lines correspond to three-terms approximation
of (17).

maximum errors (compared to ‘exact’ expression (18)) that are within a few percent. Infigure 2 the contour
lines ofvz, defined by (18) are shown as a solid lines, while the same contours for three-term approximation
of (17) are plotted as dotted lines. Despite this approximation the shape of the contours is rather similar, the
discrepancy amounts up to 7% of the average velocity〈vz〉, reaching a maximum not far from the corner points,
where the velocityvz is underestimated. Increasing the number of terms in (17) to one hundred, reduces the
relative error to less then 0.005%, but, it will take much more computer time to simulate the passive tracers
advection.

3. Chaotic mixing in PPM

The motion of a passive individual (Lagrangian) particle is described by the advection equations

dr

dt
= vr(r, φ), r

dθ

dt
= vθ(r,φ), dz

dt
= vz(r,φ), (19)

with the velocity field on the right hand side of (19) defined by (6) and (18). The initial conditions are
r = r0, θ = θ0, z= 0 at t = 0.

Here the variableφ is obviously defined as

φ =



θ, 2kL6 z < (2k + 1)L, 06 θ 6 π,
θ − π, 2kL6 z < (2k + 1)L, π < θ < 2π,

θ − π/2, (2k + 1)L6 z < (2k+ 2)L, π/26 θ 6 3π/2,

θ + π/2, (2k + 1)L6 z < (2k+ 2)L, 06 θ < π/2,
θ − 3π/2, (2k + 1)L6 z < (2k+ 2)L, 3π/2< θ < 2π,

(20)

wherek = 0,±1,±2, . . . .

System (19) describes a steady motion of an individual particle along the streamline in each compartment.
However, as the flow is three-dimensional and spatially periodic, it can exhibit chaotic behaviour (Aref [13,
Section 5.4]).

In Khakhar et al. [1] the single non-dimensional parameterβ, the ‘mixing strength’

β = 4VL

3γ 〈vz〉a , (21)
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was introduced to completely describe the behaviour of such a system. Although the parameterγ has no
particular meaning for the exact solution (6), the value ofβ is used to compare our results with those of the
literature.

Poincaré mapping was applied to reveal the zones of regular and chaotic motion. The Poincaré maps were
constructed by taking an initial point(r0, θ0) at the levelz= 0 and recording the coordinates of the intersections
of the trajectory with the planeszn = 2nL, n= 0,±1,±2, . . . .

The Poincaré maps for several values ofβ were computed and analysed using both the approximate and
exact solution. Here we present the resulting Poincaré maps for which one single starting point was chosen in
the chaotic zone (figure 3). White regions in the plots correspond to islands. The boundaries of the islands are
plotted as thin solid lines.

Islands in Poincaré maps correspond to the Kolmogorov–Arnold–Moser (KAM) tubes in the flow. The fluid
captured in such a tube will only travel inside, not mixing with the rest of the fluid outside the tube. The
influence of the KAM tube on mixing can be characterized by the relative flux carried by the tube compared to
the total flux through the mixer. So, for the islands both their area and the flux carried by corresponding KAM
tubes are evaluated. The flux can be computed as the integral ofvz over the islands area, or, by using Stokes
theorem, as a contour integral over the boundary of islands.

Figures 3(a)and3(b) present the Poincaré maps forβ = 4. For the approximate solution the eight largest
islands are clearly seen (figure 3(a)). They occupy about 49% of the cross-section area and carry approximately
55% of the total flux. The exact solution provides a completely different system of islands (figure 3(b)). Their
influence is considerably lower since they occupy only about 13% of the area and bear 18% of the total flux.

The difference becomes even stronger for larger values of the mixing strengthβ. Figures 3(c)and 3(d)
represent the case ofβ = 8. The approximate solution provides two large islands that occupy about 13% of
the cross-section (seefigure 3(c)) and bear 18% of total flux, while the islands revealed by the exact solution
(figure 3(d)) occupy only about 0.7% of the cross-section area. The relative flux through KAM tubes amounts
in this case to approximately only 1% of total flux.

In both examples presented the total area of the cross-section of the KAM tubes is significantly smaller when
the exact solution is used. As both the approximate and exact solutions are based on the same simplified model
of the PPM, i.e. neglecting the transition effects at the joints of the mixer elements, the calculated shape of the
KAM tubes should be considered with some reservations. The relative cross section of, and the relative flux
through these tubes are of more relevance and they can give an useful estimation of these values for practical
flows.

Streaklines can serve as a tool to characterise the mixing and to visualise underlying mixing mechanisms.
Kusch and Ottino [6] noted that computed streaklines, originating from a cross-section of a KAM tube, are
much different from those experimentally observed. Computed streaklines forβ = 8.0 and the experimental
results obtained forβ = 10.0± 0.3 were compared to get, at least, some resemblance. They pointed out that the
PPM model can hardly mimic closely the experimental results (due to the small length of dividing plates—less
than the pipe radius). However, the results of numerical simulations using the corrected velocity field (6), (18)
and the right value forβ gives a much better agreement.Figures 3(e)and3(f) show the Poincaré maps for
β = 10, using both solutions. Infigure 3(f)the approximate contours of the two islands of period 2 are plotted
with solid lines. These contours were used to reveal the shape of the correspondent KAM tubes (seefigure 4(c)).
Contours were represented by closed polygons and the vertices of these polygons were then tracked numerically
through four mixing elements, showing the outer boundary of the KAM tube. The other two images infigure 4
represent the numerical(a) and experimental(b) results from Kusch and Ottino [6], respectively. As for the
experimental results the actual value of mixing strength wasβ = 10.0± 0.3, we calculated the KAM tube
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Poincaré maps for different values of mixing strengthβ = 4 ((a) and (b)),β = 8 ((c) and (d)),β = 10 ((e) and (f)), respectively. Pictures in
the left column ((a), (c), (e)) were obtained by using approximate solution (16), (17), while those in the right column were obtained by using the exact

solution (6), (18).
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(a) (b) (c)

Figure 4. Computed KAM tubes for the PPM model with mixing strength parameterβ = 10.0 (c) compared with (a) computed (β = 8) and (b)
experimental (β = 10.0± 0.3) streaklines from Kusch and Ottino [6]. (Images (a) and (b) are taken from figure 9 of the cited paper, reproduced with

permission from Cambridge University Press.)

shapes for the limiting valuesβ = 9.7 andβ = 10.3 as well. The overall shape of the tubes does not change
much, variation of mixing strength influences mainly the tube thickness: it is thinner for largerβ parameter and
vice versa.

Kusch and Ottino [6] did not specify explicitly the location where the dye for streakline visualization was
injected. However, it is easy to show that when the dye is injected just a little outside the KAM tube, this is
clearly visible because the dye starts to spread over the mixing elements. To illustrate this, circles were drawn
around the geometrical center of the island (seefigure 3(f)). Markers were evenly distributed on the boundary
of every circle and tracked through four mixing elements (two spatial periods) of the PPM. Infigure 5(a)the
radius of the circle was 0.03a, thus all markers were positioned well inside the KAM tube. Infigure 5(b)the
circle (of radius 0.062a) touches the tube boundary. Such streaklines can be slightly deformed but are still
captured completely within the tubes. Infigure 5(c)the initial circle was slightly larger then the island shown
in figure 3(f), and thus contains markers outside the KAM tube. It is clearly seen that within just four mixing
cells the markers spread over the whole cross-section of the pipe.

The use of approximate numerical solution (16), (17) led Kusch and Ottino [6] to a great discrepancy with
experimental results for 10< β < 40: experiments showed remarkably stable KAM tubes, while computations
exhibited a lot of bifurcations (see, for example, figure 10(d) from their paper). However, using the exact
solution (6), (18) relatively simple stable structures are predicted. For example, for a relatively large mixing
strength ofβ = 20, four KAM tubes of first order were found but no KAM tubes of period 2 were detected.
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(a) (b) (c)

Figure 5.Traces of the markers, originally regularly spaced on circles of different radii, centered around the geometrical centers of the islands of period 2.
Each circle contains 100 markers. The radii are: (a) 0.03a—well inside the KAM tube, (b) 0.062a—touching it’s boundary, (c) 0.08a—circumscribing

the tube boundary.

The cross section of these tubes (and, consequently, the flux associated with them) is relatively small. These
periodical structures are, nevertheless, stable.

4. Conclusions

Although the flow under study is merely a prototype flow, it possesses some important features of flows in
widely used mixing devices. The comparison of an approximate and an exact solution, obtained within the
framework of the same model, shows the possible major consequences of some mathematical simplifications.
Such simplifications can cause large differences in the predicted systems’ behaviour, especially for systems
that are supposed to exhibit chaotic properties. Here, the difference in the predicted behaviour was caused by
the use (in previous studies) of a one-term approximate solution that artificially smoothes the cross-sectional
velocity field. The exact solution shows much better agreement with the reported experimental results.

Of course, there exists an important problem regarding the abrupt transition between mixing elements and
ignoring developing flows at these transitions. Results of recent numerical simulations (Hobbs et al. [5]) show
that, indeed, this is a major assumption: for the Kenics mixer with a finite thickness of helical screwed mixing
plates, flow transitions at the abrupt entrance and exit of each element strongly affect the velocity field over up
to one quarter of the element length.

However, the conclusion from the results presented of the importance of an accurate description of the
velocity field in mixing flows, where even small changes can significantly alter the overall mixing behaviour of
the system, is still applicable for real industrial situations.
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